
10. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap.
Problem 13-3]

166

Objective

Searching, insertion and removal of a key in a tree generated from n keys
inserted in random order takes expected number of steps O(log2 n).
But worst case Θ(n) (degenerated tree).
Goal: avoidance of degeneration. Artificial balancing of the tree for each
update-operation of a tree.
Balancing: guarantee that a tree with n nodes always has a height of
O(log n).
Adelson-Venskii and Landis (1962): AVL-Trees

167

Balance of a node

The height balance of a node v is defined
as the height di�erence of its sub-trees
Tl(v) and Tr(v)

bal(v) := h(Tr(v))− h(Tl(v))

v

Tl(v)

Tr(v)

hl

hr

bal(v)

168

AVL Condition

AVL Condition: for eacn node v of a tree
bal(v) ∈ {−1, 0, 1}

v

Tl(v)

Tr(v)

h h+ 1

h+ 2

169

(Counter-)Examples

AVL tree with height 2
AVL tree with height 3 No AVL tree

170

Number of Leaves

1. observation: a binary search tree with n keys provides exactly n+ 1
leaves. Simple induction argument.

The binary search tree with n = 0 keys has m = 1 leaves
When a key is added (n→ n+ 1), then it replaces a leaf and adds two new
leafs (m→ m− 1 + 2 = m+ 1).

2. observation: a lower bound of the number of leaves in a search tree
with given height implies an upper bound of the height of a search tree
with given number of keys.

171

Lower bound of the leaves

AVL tree with height 1 has
N(1) := 2 leaves.

AVL tree with height 2 has at
least N(2) := 3 leaves.

172

Lower bound of the leaves for h > 2

Height of one subtree ≥ h− 1.
Height of the other subtree ≥ h− 2.

Minimal number of leaves N(h) is

N(h) = N(h− 1) +N(h− 2)

v

Tl(v)

Tr(v)

h− 2 h− 1

h

Overal we have N(h) = Fh+2 with Fibonacci-numbers F0 := 0, F1 := 1,
Fn := Fn−1 + Fn−2 for n > 1.

173

Fibonacci Numbers, closed Form

It holds that

Fi = 1√
5

(φi − φ̂i)

with the roots φ, φ̂ of the golden ratio equation x2 − x− 1 = 0:

φ = 1 +
√

5
2 ≈ 1.618

φ̂ = 1−
√

5
2 ≈ −0.618

174

Fibonacci Numbers, Inductive Proof
Fi

!= 1√
5(φi − φ̂i) [∗]

(
φ = 1+

√
5

2 , φ̂ = 1−
√

5
2

)
.

1. Immediate for i = 0, i = 1.

2. Let i > 2 and claim [∗] true for all Fj , j < i.

Fi
def= Fi−1 + Fi−2

[∗]= 1√
5

(φi−1 − φ̂i−1) + 1√
5

(φi−2 − φ̂i−2)

= 1√
5

(φi−1 + φi−2)− 1√
5

(φ̂i−1 + φ̂i−2) = 1√
5
φi−2(φ+ 1)− 1√

5
φ̂i−2(φ̂+ 1)

(φ, φ̂ fulfil x+ 1 = x2)

= 1√
5
φi−2(φ2)− 1√

5
φ̂i−2(φ̂2) = 1√

5
(φi − φ̂i).

175

Tree Height

Because |φ̂| < 1, overal we have

N(h) ∈ Θ

(1 +
√

5
2

)h
 ⊆ Ω(1.618h)

and thus

N(h) ≥ c · 1.618h

⇒ h ≤ 1.44 log2 n+ c′.

An AVL tree is asymptotically not more than 44% higher than a perfectly
balanced tree.5

5The perfectly balanced tree has a height of dlog2 n+ 1e
176

Insertion

Balance
Keep the balance stored in each node
Re-balance the tree in each update-operation

New node n is inserted:
Insert the node as for a search tree.
Check the balance condition increasing from n to the root.

177

Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Finished in both cases because the subtree height did not change

178

Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)

179

upin(p) - invariant

When upin(p) is called it holds that
the subtree from p is grown and
bal(p) ∈ {−1,+1}

180

upin(p)

Assumption: p is left son of pp6

=⇒

pp +1 pp 0

p p

case 1: bal(pp) = +1, done.

=⇒

pp 0 pp −1

p p

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

6If p is a right son: symmetric cases with exchange of +1 and −1
181

upin(p)

Assumption: p is left son of pp

pp −1

p

case 3: bal(pp) = −1,

This case is problematic: adding n to the subtree from pp has violated the
AVL-condition. Re-balance!
Two cases bal(p) = −1, bal(p) = +1

182

Rotations
case 1.1 bal(p) = −1. 7

y

x

t1

t2

t3

pp −2

p −1

h

h− 1

h− 1

h+ 2 h

=⇒
rotation

right

x

y

t1 t2 t3

pp 0

p 0

h h− 1 h− 1

h+ 1 h+ 1

7p right son: ⇒ bal(pp) = bal(p) = +1, left rotation
183

Rotations
case 1.1 bal(p) = −1. 8

z

x

y

t1
t2 t3

t4

pp −2

p +1

h −1/+ 1

h− 1

h− 1
h− 2

h− 2
h− 1

h− 1

h+ 2 h

=⇒
double
rotation
left-right

y

x z

t1

t2 t3
t4

pp 0

0/− 1 +1/0

h− 1 h− 1
h− 2

h− 2
h− 1

h− 1

h+ 1

8p right son⇒ bal(pp) = +1, bal(p) = −1, double rotation right left
184

Analysis

Tree height: O(log n).
Insertion like in binary search tree.
Balancing via recursion from node to the root. Maximal path lenght
O(log n).

Insertion in an AVL-tree provides run time costs of O(log n).

185

Deletion
Case 1: Children of node n are both leaves Let p be parent node of n. ⇒
Other subtree has height h′ = 0, 1 or 2.
h′ = 1: Adapt bal(p).
h′ = 0: Adapt bal(p). Call upout(p).
h′ = 2: Rebalanciere des Teilbaumes. Call upout(p).

p

n

h = 0, 1, 2

−→

p

h = 0, 1, 2

186

Deletion

Case 2: one child k of node n is an inner node
Replace n by k. upout(k)

p

n

k
−→

p

k

187

Deletion

Case 3: both children of node n are inner nodes
Replace n by symmetric successor. upout(k)
Deletion of the symmetric successor is as in case 1 or 2.

188

upout(p)

Let pp be the parent node of p.
(a) p left child of pp

1. bal(pp) = −1 ⇒ bal(pp)← 0. upout(pp)
2. bal(pp) = 0 ⇒ bal(pp)← +1.
3. bal(pp) = +1⇒ next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and −1.

189

upout(p)

Case (a).3: bal(pp) = +1. Let q be brother of p
(a).3.1: bal(q) = 0.9

ypp +1

xp 0 zq 0

1 2

3 4

h− 1 h− 1

h+ 1 h+ 1

=⇒
Left Rotate(y)

z −1

y +1

x 0

1 2

3

4

h− 1 h− 1

h+ 1

h+ 1

9(b).3.1: bal(pp) = −1, bal(q) = −1, Right rotation 190

upout(p)

Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.10

ypp +1

xp 0 zq +1

1 2

3

4

h− 1 h− 1

h

h+ 1

=⇒
Left Rotate(y)

z 0r

y 0

x 0

1 2 3 4

h− 1 h− 1 h h+ 1

plus upout(r).
10(b).3.2: bal(pp) = −1, bal(q) = +1, Right rotation+upout

191

upout(p)

Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = −1.11

ypp +1

xp 0 zq −1

w

1 2

3 4

5
h− 1 h− 1

h

=⇒
Rotate right (z)

left (y)

w 0r

y 0

x

z

0

1 2 3 4 5

h− 1 h− 1 h

plus upout(r).
11(b).3.3: bal(pp) = −1, bal(q) = −1, left-right rotation + upout

192

Conclusion

AVL trees have worst-case asymptotic runtimes of O(log n) for searching,
insertion and deletion of keys.
Insertion and deletion is relatively involved and an overkill for really
small problems.

193

	AVL Trees
	Balance
	AVL Condition
	Fibonacci Numbers
	AVL Insert

