
10. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap.
Problem 13-3]
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Objective

Searching, insertion and removal of a key in a tree generated from n keys
inserted in random order takes expected number of steps O(log2 n).
But worst case Θ(n) (degenerated tree).
Goal: avoidance of degeneration. Artificial balancing of the tree for each
update-operation of a tree.
Balancing: guarantee that a tree with n nodes always has a height of
O(log n).
Adelson-Venskii and Landis (1962): AVL-Trees
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Balance of a node

The height balance of a node v is defined
as the height di�erence of its sub-trees
Tl(v) and Tr(v)

bal(v) := h(Tr(v))− h(Tl(v))

v

Tl(v)

Tr(v)

hl

hr

bal(v)
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AVL Condition

AVL Condition: for eacn node v of a tree
bal(v) ∈ {−1, 0, 1}

v

Tl(v)

Tr(v)

h h+ 1

h+ 2
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(Counter-)Examples

AVL tree with height 2
AVL tree with height 3 No AVL tree
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Number of Leaves

1. observation: a binary search tree with n keys provides exactly n+ 1
leaves. Simple induction argument.

The binary search tree with n = 0 keys has m = 1 leaves
When a key is added (n→ n+ 1), then it replaces a leaf and adds two new
leafs (m→ m− 1 + 2 = m+ 1).

2. observation: a lower bound of the number of leaves in a search tree
with given height implies an upper bound of the height of a search tree
with given number of keys.
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Lower bound of the leaves

AVL tree with height 1 has
N(1) := 2 leaves.

AVL tree with height 2 has at
least N(2) := 3 leaves.
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Lower bound of the leaves for h > 2

Height of one subtree ≥ h− 1.
Height of the other subtree ≥ h− 2.

Minimal number of leaves N(h) is

N(h) = N(h− 1) +N(h− 2)

v

Tl(v)

Tr(v)

h− 2 h− 1

h

Overal we have N(h) = Fh+2 with Fibonacci-numbers F0 := 0, F1 := 1,
Fn := Fn−1 + Fn−2 for n > 1.
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Fibonacci Numbers, closed Form

It holds that

Fi = 1√
5

(φi − φ̂i)

with the roots φ, φ̂ of the golden ratio equation x2 − x− 1 = 0:

φ = 1 +
√

5
2 ≈ 1.618

φ̂ = 1−
√

5
2 ≈ −0.618
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Fibonacci Numbers, Inductive Proof
Fi

!= 1√
5(φi − φ̂i) [∗]

(
φ = 1+

√
5

2 , φ̂ = 1−
√

5
2

)
.

1. Immediate for i = 0, i = 1.

2. Let i > 2 and claim [∗] true for all Fj , j < i.

Fi
def= Fi−1 + Fi−2

[∗]= 1√
5

(φi−1 − φ̂i−1) + 1√
5

(φi−2 − φ̂i−2)

= 1√
5

(φi−1 + φi−2)− 1√
5

(φ̂i−1 + φ̂i−2) = 1√
5
φi−2(φ+ 1)− 1√

5
φ̂i−2(φ̂+ 1)

(φ, φ̂ fulfil x+ 1 = x2)

= 1√
5
φi−2(φ2)− 1√

5
φ̂i−2(φ̂2) = 1√

5
(φi − φ̂i).
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Tree Height

Because |φ̂| < 1, overal we have

N(h) ∈ Θ

(1 +
√

5
2

)h
 ⊆ Ω(1.618h)

and thus

N(h) ≥ c · 1.618h

⇒ h ≤ 1.44 log2 n+ c′.

An AVL tree is asymptotically not more than 44% higher than a perfectly
balanced tree.5

5The perfectly balanced tree has a height of dlog2 n+ 1e
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Insertion

Balance
Keep the balance stored in each node
Re-balance the tree in each update-operation

New node n is inserted:
Insert the node as for a search tree.
Check the balance condition increasing from n to the root.
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Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Finished in both cases because the subtree height did not change
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Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)
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upin(p) - invariant

When upin(p) is called it holds that
the subtree from p is grown and
bal(p) ∈ {−1,+1}
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upin(p)

Assumption: p is left son of pp6

=⇒

pp +1 pp 0

p p

case 1: bal(pp) = +1, done.

=⇒

pp 0 pp −1

p p

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

6If p is a right son: symmetric cases with exchange of +1 and −1
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upin(p)

Assumption: p is left son of pp

pp −1

p

case 3: bal(pp) = −1,

This case is problematic: adding n to the subtree from pp has violated the
AVL-condition. Re-balance!
Two cases bal(p) = −1, bal(p) = +1
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Rotations
case 1.1 bal(p) = −1. 7

y

x

t1

t2

t3

pp −2

p −1

h

h− 1

h− 1

h+ 2 h

=⇒
rotation

right

x

y

t1 t2 t3

pp 0

p 0

h h− 1 h− 1

h+ 1 h+ 1

7p right son: ⇒ bal(pp) = bal(p) = +1, left rotation
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Rotations
case 1.1 bal(p) = −1. 8

z

x

y

t1
t2 t3

t4

pp −2

p +1

h −1/+ 1

h− 1

h− 1
h− 2

h− 2
h− 1

h− 1

h+ 2 h

=⇒
double
rotation
left-right

y

x z

t1

t2 t3
t4

pp 0

0/− 1 +1/0

h− 1 h− 1
h− 2

h− 2
h− 1

h− 1

h+ 1

8p right son⇒ bal(pp) = +1, bal(p) = −1, double rotation right left
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Analysis

Tree height: O(log n).
Insertion like in binary search tree.
Balancing via recursion from node to the root. Maximal path lenght
O(log n).

Insertion in an AVL-tree provides run time costs of O(log n).
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Deletion
Case 1: Children of node n are both leaves Let p be parent node of n. ⇒
Other subtree has height h′ = 0, 1 or 2.
h′ = 1: Adapt bal(p).
h′ = 0: Adapt bal(p). Call upout(p).
h′ = 2: Rebalanciere des Teilbaumes. Call upout(p).

p

n

h = 0, 1, 2

−→

p

h = 0, 1, 2
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Deletion

Case 2: one child k of node n is an inner node
Replace n by k. upout(k)

p

n

k
−→

p

k
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Deletion

Case 3: both children of node n are inner nodes
Replace n by symmetric successor. upout(k)
Deletion of the symmetric successor is as in case 1 or 2.
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upout(p)

Let pp be the parent node of p.
(a) p left child of pp

1. bal(pp) = −1 ⇒ bal(pp)← 0. upout(pp)
2. bal(pp) = 0 ⇒ bal(pp)← +1.
3. bal(pp) = +1⇒ next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and −1.
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upout(p)

Case (a).3: bal(pp) = +1. Let q be brother of p
(a).3.1: bal(q) = 0.9

ypp +1

xp 0 zq 0

1 2

3 4

h− 1 h− 1

h+ 1 h+ 1

=⇒
Left Rotate(y)

z −1

y +1

x 0

1 2

3

4

h− 1 h− 1

h+ 1

h+ 1

9(b).3.1: bal(pp) = −1, bal(q) = −1, Right rotation 190



upout(p)

Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.10

ypp +1

xp 0 zq +1

1 2

3

4

h− 1 h− 1

h

h+ 1

=⇒
Left Rotate(y)

z 0r

y 0

x 0

1 2 3 4

h− 1 h− 1 h h+ 1

plus upout(r).
10(b).3.2: bal(pp) = −1, bal(q) = +1, Right rotation+upout
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upout(p)

Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = −1.11

ypp +1

xp 0 zq −1

w

1 2

3 4

5
h− 1 h− 1

h

=⇒
Rotate right (z)

left (y)

w 0r

y 0

x

z

0

1 2 3 4 5

h− 1 h− 1 h

plus upout(r).
11(b).3.3: bal(pp) = −1, bal(q) = −1, left-right rotation + upout
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Conclusion

AVL trees have worst-case asymptotic runtimes of O(log n) for searching,
insertion and deletion of keys.
Insertion and deletion is relatively involved and an overkill for really
small problems.
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