10. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap. Problem 13-3]

Objective

Searching, insertion and removal of a key in a tree generated from n keys inserted in random order takes expected number of steps $\mathcal{O}\left(\log _{2} n\right)$. But worst case $\Theta(n)$ (degenerated tree).
Goal: avoidance of degeneration. Artificial balancing of the tree for each update-operation of a tree.
Balancing: guarantee that a tree with n nodes always has a height of $\mathcal{O}(\log n)$.

Adelson-Venskii and Landis (1962): AVL-Trees

Balance of a node

The height balance of a node v is defined as the height difference of its sub-trees $T_{l}(v)$ and $T_{r}(v)$

$$
\operatorname{bal}(v):=h\left(T_{r}(v)\right)-h\left(T_{l}(v)\right)
$$

AVL Condition

(Counter-)Examples

AVL tree with height 2

AVL tree with height 3

No AVL tree

Number of Leaves

- 1. observation: a binary search tree with n keys provides exactly $n+1$ leaves. Simple induction argument.
- The binary search tree with $n=0$ keys has $m=1$ leaves

■ When a key is added $(n \rightarrow n+1)$, then it replaces a leaf and adds two new leafs $(m \rightarrow m-1+2=m+1)$.

- 2. observation: a lower bound of the number of leaves in a search tree with given height implies an upper bound of the height of a search tree with given number of keys.

Lower bound of the leaves

AVL tree with height 1 has $N(1):=2$ leaves.

AVL tree with height 2 has at least $N(2):=3$ leaves.

Lower bound of the leaves for $h>2$

- Height of one subtree $\geq h-1$.
- Height of the other subtree $\geq h-2$. Minimal number of leaves $N(h)$ is

$$
N(h)=N(h-1)+N(h-2)
$$

Overal we have $N(h)=F_{h+2}$ with Fibonacci-numbers $F_{0}:=0, F_{1}:=1$, $F_{n}:=F_{n-1}+F_{n-2}$ for $n>1$.

Fibonacci Numbers, closed Form

It holds that

$$
F_{i}=\frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right)
$$

with the roots $\phi, \hat{\phi}$ of the golden ratio equation $x^{2}-x-1=0$:

$$
\begin{aligned}
& \phi=\frac{1+\sqrt{5}}{2} \approx 1.618 \\
& \hat{\phi}=\frac{1-\sqrt{5}}{2} \approx-0.618
\end{aligned}
$$

Fibonacci Numbers, Inductive Proof
$F_{i} \stackrel{!}{=} \frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right) \quad[*] \quad\left(\phi=\frac{1+\sqrt{5}}{2}, \hat{\phi}=\frac{1-\sqrt{5}}{2}\right)$.

1. Immediate for $i=0, i=1$.
2. Let $i>2$ and claim $[*]$ true for all $F_{j}, j<i$.

$$
\begin{aligned}
F_{i} & \stackrel{\text { def }}{=} F_{i-1}+F_{i-2} \stackrel{[*]}{=} \frac{1}{\sqrt{5}}\left(\phi^{i-1}-\hat{\phi}^{i-1}\right)+\frac{1}{\sqrt{5}}\left(\phi^{i-2}-\hat{\phi}^{i-2}\right) \\
& =\frac{1}{\sqrt{5}}\left(\phi^{i-1}+\phi^{i-2}\right)-\frac{1}{\sqrt{5}}\left(\hat{\phi}^{i-1}+\hat{\phi}^{i-2}\right)=\frac{1}{\sqrt{5}} \phi^{i-2}(\phi+1)-\frac{1}{\sqrt{5}} \hat{\phi}^{i-2}(\hat{\phi}+1)
\end{aligned}
$$

$\left(\phi, \hat{\phi}\right.$ fulfil $\left.x+1=x^{2}\right)$

$$
=\frac{1}{\sqrt{5}} \phi^{i-2}\left(\phi^{2}\right)-\frac{1}{\sqrt{5}} \hat{\phi}^{i-2}\left(\hat{\phi}^{2}\right)=\frac{1}{\sqrt{5}}\left(\phi^{i}-\hat{\phi}^{i}\right) .
$$

Tree Height

Because $|\hat{\phi}|<1$, overal we have

$$
N(h) \in \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^{h}\right) \subseteq \Omega\left(1.618^{h}\right)
$$

and thus

$$
\begin{aligned}
N(h) & \geq c \cdot 1.618^{h} \\
\Rightarrow \quad h & \leq 1.44 \log _{2} n+c^{\prime} .
\end{aligned}
$$

An AVL tree is asymptotically not more than 44% higher than a perfectly balanced tree. ${ }^{5}$
${ }^{5}$ The perfectly balanced tree has a height of $\left\lceil\log _{2} n+1\right\rceil$

Insertion

Balance

■ Keep the balance stored in each node
■ Re-balance the tree in each update-operation
New node n is inserted:
■ Insert the node as for a search tree.

- Check the balance condition increasing from n to the root.

Balance at Insertion Point

case $1: \operatorname{bal}(p)=+1$

case $2: \operatorname{bal}(p)=-1$

Finished in both cases because the subtree height did not change

Balance at Insertion Point

case 3.1: $\operatorname{bal}(p)=0$ right

case 3.2: $\operatorname{bal}(p)=0$, left

Not finished in both case. Call of upin(p)

upin(p) - invariant

When $\operatorname{upin}(p)$ is called it holds that

- the subtree from p is grown and

■ $\operatorname{bal}(p) \in\{-1,+1\}$

$\operatorname{upin}(p)$

Assumption: p is left son of $p p^{6}$

In both cases the AVL-Condition holds for the subtree from $p p$

[^0]
upin(p)

Assumption: p is left son of $p p$

$$
\operatorname{case} 3: \operatorname{bal}(p p)=-1,
$$

This case is problematic: adding n to the subtree from $p p$ has violated the AVL-condition. Re-balance!
Two cases $\operatorname{bal}(p)=-1, \operatorname{bal}(p)=+1$

Rotations

case $1.1 \operatorname{bal}(p)=-1 .{ }^{7}$

${ }^{7} p$ right son: $\Rightarrow \operatorname{bal}(p p)=\operatorname{bal}(p)=+1$, left rotation

Rotations

case $1.1 \operatorname{bal}(p)=-1 .{ }^{8}$

${ }^{8} p$ right son $\stackrel{h-{ }^{2} \Rightarrow}{\Rightarrow} \operatorname{bal}(p p)=+1, \operatorname{bal}(p)=-1$, double rotation right left

Analysis

■ Tree height: $\mathcal{O}(\log n)$.
■ Insertion like in binary search tree.

- Balancing via recursion from node to the root. Maximal path lenght $\mathcal{O}(\log n)$.
Insertion in an AVL-tree provides run time costs of $\mathcal{O}(\log n)$.

Deletion

Case 1: Children of node n are both leaves Let p be parent node of $n . \Rightarrow$ Other subtree has height $h^{\prime}=0,1$ or 2 .
■ $h^{\prime}=1$: Adapt $\operatorname{bal}(p)$.
■ $h^{\prime}=0$: Adapt bal (p). Call upout (p) .
■ $h^{\prime}=2$: Rebalanciere des Teilbaumes. Call upout (p).

Deletion

Case 2: one child k of node n is an inner node
■ Replace n by k. upout(k)

Deletion

Case 3: both children of node n are inner nodes

- Replace n by symmetric successor. upout (k)

■ Deletion of the symmetric successor is as in case 1 or 2.

Let $p p$ be the parent node of p.
(a) p left child of $p p$

1. $\operatorname{bal}(p p)=-1 \Rightarrow \operatorname{bal}(p p) \leftarrow 0$. upout (pp)
2. $\operatorname{bal}(p p)=0 \Rightarrow \operatorname{bal}(p p) \leftarrow+1$.
3. $\operatorname{bal}(p p)=+1 \Rightarrow$ next slides.
(b) p right child of p : Symmetric cases exchanging +1 and -1 .

upout (p)

Case (a).3: $\operatorname{bal}(p p)=+1$. Let q be brother of p (a).3.1: $\operatorname{bal}(q)=0 .{ }^{9}$

\Longrightarrow
Left Rotate(y)

[^1]
upout (p)

Case (a).3: $\operatorname{bal}(p p)=+1$. (a).3.2: $\operatorname{bal}(q)=+1 .^{10}$

${ }^{10}(\mathrm{~b}) .3 .2: \operatorname{bal}(p p)=-1, \operatorname{bal}(q)=+1$, Right rotation+upout

upout (p)

Case (a).3: $\operatorname{bal}(p p)=+1$. (a).3.3: $\operatorname{bal}(q)=-1 .{ }^{11}$

plus upout (r).

[^2]
Conclusion

■ AVL trees have worst-case asymptotic runtimes of $\mathcal{O}(\log n)$ for searching, insertion and deletion of keys.

- Insertion and deletion is relatively involved and an overkill for really small problems.

[^0]: ${ }^{6}$ If p is a right son: symmetric cases with exchange of +1 and -1

[^1]: ${ }^{9}(\mathrm{~b}) .3 .1: \operatorname{bal}(p p)=-1, \operatorname{bal}(q)=-1$, Right rotation

[^2]: ${ }^{11}(\mathrm{~b}) .3 .3: \operatorname{bal}(p p)=-1, \operatorname{bal}(q)=-1$, left-right rotation + upout

