10. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap. Problem 13-3]

Objective

Searching, insertion and removal of a key in a tree generated from n keys inserted in random order takes expected number of steps $\mathcal{O}(\log_2 n)$.

But worst case $\Theta(n)$ (degenerated tree).

Goal: avoidance of degeneration. Artificial balancing of the tree for each update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of $\mathcal{O}(\log n)$.

Adelson-Venskii and Landis (1962): AVL-Trees

Balance of a node

The height **balance** of a node v is defined as the height difference of its sub-trees $T_l(v)$ and $T_r(v)$

$$bal(v) := h(T_r(v)) - h(T_l(v))$$

AVL Condition

AVL Condition: for eacn node v of a tree $\mathrm{bal}(v) \in \{-1,0,1\}$

(Counter-)Examples

Number of Leaves

- 1. observation: a binary search tree with n keys provides exactly n+1 leaves. Simple induction argument.
 - The binary search tree with n = 0 keys has m = 1 leaves
 - When a key is added $(n \to n+1)$, then it replaces a leaf and adds two new leafs $(m \to m-1+2=m+1)$.
- 2. observation: a lower bound of the number of leaves in a search tree with given height implies an upper bound of the height of a search tree with given number of keys.

Lower bound of the leaves

AVL tree with height 1 has N(1) := 2 leaves.

AVL tree with height 2 has at least N(2) := 3 leaves.

Lower bound of the leaves for h > 2

- Height of one subtree > h 1.
- Height of the other subtree $\geq h-2$. Minimal number of leaves N(h) is

$$N(h) = N(h-1) + N(h-2)$$

Overal we have $N(h) = F_{h+2}$ with **Fibonacci-numbers** $F_0 := 0$, $F_1 := 1$, $F_n := F_{n-1} + F_{n-2}$ for n > 1.

Fibonacci Numbers, closed Form

It holds that

$$F_i = \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i)$$

with the roots ϕ , $\hat{\phi}$ of the golden ratio equation $x^2 - x - 1 = 0$:

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$$

$$\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx -0.618$$

Fibonacci Numbers, Inductive Proof

$$F_i \stackrel{!}{=} \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i)$$
 [*] $\left(\phi = \frac{1+\sqrt{5}}{2}, \hat{\phi} = \frac{1-\sqrt{5}}{2}\right)$.

- 1. Immediate for i = 0, i = 1.
- 2. Let i > 2 and claim [*] true for all F_i , j < i.

$$\begin{split} F_i &\stackrel{def}{=} F_{i-1} + F_{i-2} \stackrel{[*]}{=} \frac{1}{\sqrt{5}} (\phi^{i-1} - \hat{\phi}^{i-1}) + \frac{1}{\sqrt{5}} (\phi^{i-2} - \hat{\phi}^{i-2}) \\ &= \frac{1}{\sqrt{5}} (\phi^{i-1} + \phi^{i-2}) - \frac{1}{\sqrt{5}} (\hat{\phi}^{i-1} + \hat{\phi}^{i-2}) = \frac{1}{\sqrt{5}} \phi^{i-2} (\phi + 1) - \frac{1}{\sqrt{5}} \hat{\phi}^{i-2} (\hat{\phi} + 1) \\ (\phi, \hat{\phi} \text{ fulfil } x + 1 = x^2) \\ &= \frac{1}{\sqrt{5}} \phi^{i-2} (\phi^2) - \frac{1}{\sqrt{5}} \hat{\phi}^{i-2} (\hat{\phi}^2) = \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i). \end{split}$$

Tree Height

Because $|\hat{\phi}| < 1$, overal we have

$$N(h) \in \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^h\right) \subseteq \Omega(1.618^h)$$

and thus

$$N(h) \ge c \cdot 1.618^h$$

\Rightarrow $h \le 1.44 \log_2 n + c'$.

An AVL tree is asymptotically not more than 44% higher than a perfectly balanced tree.⁵

⁵The perfectly balanced tree has a height of $\lceil \log_2 n + 1 \rceil$

Insertion

Balance

- Keep the balance stored in each node
- Re-balance the tree in each update-operation

New node n is inserted:

- Insert the node as for a search tree.
- \blacksquare Check the balance condition increasing from n to the root.

Balance at Insertion Point

Finished in both cases because the subtree height did not change

Balance at Insertion Point

Not finished in both case. Call of upin(p)

upin(p) - invariant

When upin(p) is called it holds that

- \blacksquare the subtree from p is grown and
- $bal(p) \in \{-1, +1\}$

upin(p)

Assumption: p is left son of pp^6

In both cases the AVL-Condition holds for the subtree from pp

 $^{^{}m 6}$ If p is a right son: symmetric cases with exchange of +1 and -1

upin(p)

Assumption: p is left son of pp

This case is problematic: adding n to the subtree from pp has violated the AVL-condition. Re-balance!

Two cases bal(p) = -1, bal(p) = +1

Rotations

case 1.1 bal(p) = -1.

 ^{7}p right son: \Rightarrow bal(pp) =bal(p) = +1, left rotation

Rotations

case 1.1 bal(p) = -1. 8

⁸p right son $\Rightarrow \text{bal}(pp) = +1$, bal(p) = -1, double rotation right left

Analysis

- Tree height: $\mathcal{O}(\log n)$.
- Insertion like in binary search tree.
- Balancing via recursion from node to the root. Maximal path lenght $\mathcal{O}(\log n)$.

Insertion in an AVL-tree provides run time costs of $\mathcal{O}(\log n)$.

Deletion

Case 1: Children of node n are both leaves Let p be parent node of n. \Rightarrow Other subtree has height h'=0, 1 or 2.

- $\blacksquare h' = 1$: Adapt bal(p).
- h' = 0: Adapt bal(p). Call **upout**(p).
- h' = 2: Rebalanciere des Teilbaumes. Call **upout (p)**.

Deletion

Case 2: one child k of node n is an inner node

■ Replace n by k. upout(k)

Deletion

Case 3: both children of node n are inner nodes

- \blacksquare Replace n by symmetric successor. **upout(k)**
- Deletion of the symmetric successor is as in case 1 or 2.

Let pp be the parent node of p.

- (a) p left child of pp
 - 1. $bal(pp) = -1 \Rightarrow bal(pp) \leftarrow 0$. upout(pp)
 - 2. $bal(pp) = 0 \Rightarrow bal(pp) \leftarrow +1$.
 - 3. $bal(pp) = +1 \Rightarrow next slides$.
- (b) p right child of pp: Symmetric cases exchanging +1 and -1.

Case (a).3: bal(pp) = +1. Let q be brother of p (a).3.1: bal(q) = 0.9

 $^{^{9}}$ (b).3.1: bal(pp) = -1, bal(q) = -1, Right rotation

Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.

¹⁰(b).3.2: $\operatorname{bal}(pp) = -1$, $\operatorname{bal}(q) = +1$, Right rotation+upout

Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = -1.

¹¹(b).3.3: bal(pp) = -1, bal(q) = -1, left-right rotation + upout

Conclusion

- AVL trees have worst-case asymptotic runtimes of $\mathcal{O}(\log n)$ for searching, insertion and deletion of keys.
- Insertion and deletion is relatively involved and an overkill for really small problems.