10. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.21, Cormen et al, Kap.
Problem 13-3]

166



Objective

Searching, insertion and removal of a key in a tree generated from n keys
inserted in random order takes expected number of steps O(log, n).

But worst case ©(n) (degenerated tree).

Goal: avoidance of degeneration. Artificial balancing of the tree for each
update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of
O(logn).

Adelson-Venskii and Landis (1962): AVL-Trees

167



Balance of a node

The height balance of a node v is defined
as the height difference of its sub-trees
T)(v) and T,.(v)

bal(v) == h(T (1)) — h(Ti(v))

h

168



AVL Condition

AVL Condition: for eacn node v of a tree
bal(v) € {—1,0,1}

169



(Counter-)Examples

/' \

{ ) \ /N
[\ N\

/\

AVL tree with height 2
AVL tree with height 3

/' \
[\ [
/\

No AVL tree



Number of Leaves

m 1. observation: a binary search tree with n keys provides exactly n + 1
leaves. Simple induction argument.

m The binary search tree with n = 0 keys has m = 1 leaves
m When a key is added (n — n + 1), then it replaces a leaf and adds two new
leafs(m > m —14+2=m+1).

m 2. observation: a lower bound of the number of leaves in a search tree
with given height implies an upper bound of the height of a search tree
with given number of keys.

il



Lower bound of the leaves

/ N\

AVL tree with height 1 has
N(1) := 2 leaves.

/N /\
/\ /\
/' \

[\ 1\

AVL tree with height 2 has at
least N(2) := 3 leaves.

172



Lower bound of the leaves for h > 2

m Height of one subtree > h — 1. h—2 h—1
m Height of the other subtree > h — 2.
Minimal number of leaves N(h) is

N(h)=N(h—1)+ N(h—2) Ti(v)

T.(v)

Overal we have N(h) = Fj,» with Fibonacci-numbers F;, := 0, F := 1,
Fn = anl —+ Fn72 forn > 1.

173



Fibonacci Numbers, closed Form

It holds that

F; = ﬁ((/ﬁz )

with the roots ¢, ¢ of the golden ratio equation z2 — z — 1 = 0:

145
é +2\/_z1.618

1 _2\/5 ~ —0.618

-
|

174



Fibonacci Numbers, Inductive Proof

L %((éz _ qu) [+] (¢ — 1+2\/57 ¢ = 172\/5).

1. Immediate fori=0,7 = 1.

2. Leti > 2 and claim [«] true for all Fj, j < i.

Y +FY L@ eyt <<z>” )

%\

f

(674 6 = 4 ) - 8o+

“(o+1) 7

\/gqb’ %(

:ﬁ
(¢, fulfil z + 1 = 22
1 1

L R ey N St By
—\/gcb *(¢%) 5<Z> (¢7) = —=(¢" — ¢").

ot

175



Tree Height

Because \é] < 1, overal we have

h
N(h) € © ((1 +2*/5> ) C 0(1.618")

and thus

N(h) > c-1.618"
= h<144logyn+c.

An AVL tree Is asymptotically not more than 44% higher than a perfectly
balanced tree?

The perfectly balanced tree has a height of [log, n + 1]

176



Insertion

Balance

m Keep the balance stored in each node

m Re-balance the tree in each update-operation
New node n is inserted:

m Insert the node as for a search tree.
m Check the balance condition increasing from n to the root.

177



Balance at Insertion Point

/NN ANEVAN
ANANA AV AN A
case T: bal(p) = +1 case 2: bal(p) = —1

Finished in both cases because the subtree height did not change

178



Balance at Insertion Point

/N /N ANEVAN
=N =N

case 3.1: bal(p) = 0 right case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)

179



upin(p) - invariant

When upin(p) is called it holds that

m the subtree from p is grown and
m bal(p) € {—1,+1}

180



upin(p)

Assumption: p is left son of pp®
AR AR
ANEAN ANEAN

case 1: bal(pp) = +1, done. case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

6If p is a right son: symmetric cases with exchange of +1 and —1

181



upin(p)
Assumption: p is left son of pp

pp -1

o/ N\
/\

case 3: bal(pp) = —1,

This case is problematic: adding n to the subtree from pp has violated the
AVL-condition. Re-balance!

Two cases bal(p) = —1, bal(p) = +1

182



Rotations

case 11 bal(p) = —1.7
’I/ j: 2

pp Yy -2
pxz -1

7N\

to

=
rotation
right

h j’ 1

’p right son: = bal(pp) = bal(p) = +1, left rotation

ppx 0

Py o

hj:l

183



Rotations

case 11 bal(p) = —1.8

h42
pp z -2

e

px +1

////’ ;y -1/ +1
7N\

t {3

h—1 h—2

B D) S 1

ty

-
double
rotation

h-1 left-right

8p right son = bal(plfo) = +1, bal(p) = —1, double rotation right left

7N\

t
h—1

h41
pp Yy 0
z 0/—-1 z +1/0
19 i3
ty
h—1 h—2 h—1
h—2 h—1

184



Analysis

m Tree height: O(logn).

m Insertion like in binary search tree.

m Balancing via recursion from node to the root. Maximal path lenght
O(logn).

Insertion in an AVL-tree provides run time costs of O(logn).

185



Deletion

Case 1: Children of node n are both leaves Let p be parent node of n. =
Other subtree has height A’ =0, 1 or 2.

m i/ = 1. Adapt bal(p).
m 2/ = 0: Adapt bal(p). Call upout (p).
m 1/ = 2: Rebalanciere des Teilbaumes. Call upout (p).

N N
SN L L

h=0,1,2 h=0,1,2

186



Deletion

Case 2: one child k£ of node n is an inner node
m Replace n by k. upout (k)

N
SN L
/' \

N
/ \

187



Deletion

Case 3: both children of node n are inner nodes

m Replace n by symmetric successor. upout (k)
m Deletion of the symmetric successor is as in case 1 or 2.

188



upout (p)

Let pp be the parent node of p.
(a) p left child of pp

1. bal(pp) = =1 = bal(pp) < 0. upout (pp)
2. bal(pp) =0 = bal(pp) + +1.
3. bal(pp) = +1 = next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and —1.

189



upout (p)

Case (a).3: bal(pp) = +1. Let ¢ be brother of p
(a).31: bal(q) = 0.2

p x?ygz 0 /?/4 \
/N /N _ a
) ) Left Rotate(y) / \

h—1 h—1 1 9 4
3 4 h—1 h—1 h+1

h+1 h+1

°(b).3.1: bal(pp) = —1, bal(q) = —1, Right rotation

190



upout (p)

Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.1°

Y+l
plx 0 gz +1
1 2
h—1 h—1
3
Ii
' 4
h+1

"
. /N
Left Rotate(y) / \
1 2 3 E

h—1 h-1 h h+1

plus upout (r).

19(b).3.2: bal(pp) = —1, bal(q) = +1, Right rotation+upout

191



upout (p)

Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = —1."

}yi ZJO/ \z
/N SN L /\{ NN
Rotate right (2)
1 ) /\ left (y)
h—1 h—1 5 1 9 3 4 5
h h—1 h—1 h

plus upout (r).
M(b).3.3: bal(pp) = —1, bal(q) = —1, left-right rotation + upout

192



Conclusion

m AVL trees have worst-case asymptotic runtimes of O(logn) for searching,
insertion and deletion of keys.

m Insertion and deletion is relatively involved and an overkill for really
small problems.

193



	AVL Trees
	Balance
	AVL Condition
	Fibonacci Numbers
	AVL Insert


