
8. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1 - 12.3]

127

Trees

Trees are
Generalized lists: nodes can have more than one successor
Special graphs: graphs consist of nodes and edges. A tree is a fully
connected, directed, acyclic graph.

128

Trees

Use
Decision trees: hierarchic representation of
decision rules
syntax trees: parsing and traversing of
expressions, e.g. in a compiler
Code tress: representation of a code, e.g. morse
alphabet, hu�man code
Search trees: allow e�cient searching for an
element by value

129

Examples

start

E

I

S

H V

U

F U

A

R

L A

W

P I

T

N

D

B X

K

C Y

M

G

Z Q

O

Ö CH

longshort

Morsealphabet

130

Examples

3/5 + 7.0

+

/

3 5

7.0

Expression tree

131

Nomenclature

Wurzel

W

I E

K

parent

child

inner node

leaves

Order of the tree: maximum number of child nodes, here: 3
Height of the tree: maximum path length root – leaf (here: 4)

132

Binary Trees

A binary tree is
either a leaf, i.e. an empty tree,
or an inner leaf with two trees Tl (left subtree) and Tr (right subtree) as
left and right successor.

In each inner node v we store
a key v.key and
two nodes v.left and v.right to the roots of the left and right subtree.

a leaf is represented by the null-pointer

key

left right

133

Linked List Node in Python

1 5 6 null
ListNode

key next

class ListNode:
entries key, next implicit via constructor

def __init__(self, key , next = None):
"""Constructor that takes a key and, optionally, next."""
self.key = key
self.next = next

}

134

Now: tree nodes in Python

class SearchNode:
implicit entries key, left, right

def __init__(self, k, l=None, r=None):
Constructor that takes a key k,
and optionally a left and right node.
self.key = k
self.left, self.right = l, r

5

3 8

2

None None

None None None

SearchNode
key

left right 135

Binary search tree
A binary search tree is a binary tree that fulfils the search tree property:

Every node v stores a key
Keys in left subtree v.left are smaller than v.key
Keys in right subtree v.right are greater than v.key

16

7

5

2

10

9 15

18

17 30

99

136

Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)→ null

137

Searching in Python

def findNode(root, key):
n = root
while n != None and n.key != key:

if key < n.key:
n = n.left

else:
n = n.right

return n

138

Height of a tree

The height h(T) of a binary tree T with root r is given by

h(r) =

0 if r = null
1 + max{h(r.left), h(r.right)} otherwise.

The worst case run time of the search is thus O(h(T))

139

Insertion of a key

Insertion of the key k

Search for k

If successful search: e.g. output
error
Of no success: insert the key at the
leaf reached

8

4

5

13

10

9

19

Insert (5)

140

Insert Nodes in Python

def addNode(root, key):
n = root
if n == None:

root = Node(key)
while n.key != key:

if key < n.key:
if n.left == None:

n.left = Node(key)
n = n.left

else:
if n.right == None:

n.right = Node(key)
n = n.right

return root
141

Tree in Python

class Tree:
def __init__(self):

self.root = None

def find(self,key):
return findNode(self.root, key)

def has(self,key):
return self.find(key) != None

def add(self,key):
self.root = addNode(self.root, key)

....
142

Remove node

Three cases possible:
Node has no children
Node has one child
Node has two children

[Leaves do not count here]

8

3

5

4

13

10

9

19

143

Remove node

Node has no children
Simple case: replace node by leaf.

8

3

5

4

13

10

9

19

remove(4)−→

8

3

5

13

10

9

19

144

Remove node

Node has one child
Also simple: replace node by single child.

8

3

5

4

13

10

9

19

remove(3)−→

8

5

4

13

10

9

19

145

Remove node

Node v has two children

The following observation helps: the smallest
key in the right subtree v.right (the symmet-
ric successor of v)

is smaller than all keys in v.right
is greater than all keys in v.left
and cannot have a left child.

Solution: replace v by its symmetric succes-
sor.

8

3

5

4

13

10

9

19

146

By symmetry...

Node v has two children

Also possible: replace v by its symmetric pre-
decessor.

Implementation: devil is in the detail!

8

3

5

4

13

10

9

19

147

Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v
w ← v.right
x← w.left
while x 6= null do

w ← x
x← x.left

return w

148

Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then v.
4, 5, 3, 9, 10, 19, 13, 8
inorder: Tleft(v), then v, then Tright(v).
3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

149

Degenerated search trees

9

5

4 8

13

10 19

Insert 9,5,13,4,8,10,19
ideally balanced

4

5

8

9

10

13

19

Insert 4,5,8,9,10,13,19
linear list

19

13

10

9

8

5

4

Insert 19,13,10,9,8,5,4
linear list

150

Probabilistically

A search tree constructed from a random sequence of numbers provides
an an expected path length of O(log n).
Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(

√
n).

Balanced trees make sure (e.g. with rotations) during insertion or deletion
that the tree stays balanced and provide a O(log n) Worst-case guarantee.

151

9. Heaps

Datenstruktur optimiert zum schnellen Extrahieren von Minimum oder
Maximum und Sortieren. [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

152

[Max-]Heap*

Binary tree with the following proper-
ties

1. complete up to the lowest level
2. Gaps (if any) of the tree in the

last level to the right
3. Heap-Condition:

Max-(Min-)Heap: key of a child
smaller (greater) that that of the
parent node

root

22

20

16

3 2

12

8 11

18

15

14

17

parent

child

leaves

*Heap(data structure), not: as in “heap and stack” (memory allocation)

153

Heap as Array

Tree→ Array:
children(i) = {2i, 2i + 1}
parent(i) = bi/2c

22
1

20
2

18
3

16
4

12
5

15
6

17
7

3
8

2
9

8
10

11
11

14
12

parent

Children

22

20

16

3 2

12

8 11

18

15

14

17

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11] [12]

Depends on the starting index4

4For array that start at 0: {2i, 2i + 1} → {2i + 1, 2i + 2}, bi/2c → b(i− 1)/2c
154

Height of a Heap

What is the height H(n) of Heap with n nodes? On the i-th level of a
binary tree there are at most 2i nodes. Up to the last level of a heap all
levels are filled with values.

H(n) = min{h ∈ N :
h−1∑
i=0

2i ≥ n}

with ∑h−1
i=0 2i = 2h − 1:

H(n) = min{h ∈ N : 2h ≥ n + 1},

thus
H(n) = dlog2(n + 1)e.

155

Insert

Insert new element at the first free
position. Potentially violates the heap
property.
Reestablish heap property: climb
successively
Worst case number of operations: O(log n)

22

20

16

3 2

12

8 11

18

15

14

17

22

20

16

3 2

12

8 11

21

18

14 15

17

156

Algorithm Sift-Up(A, m)

Input: Array A with at least m elements and Max-Heap-Structure on
A[1, . . . , m− 1]

Output: Array A with Max-Heap-Structure on A[1, . . . , m].
v ← A[m] // value
c← m // current position (child)
p← bc/2c // parent node
while c > 1 and v > A[p] do

A[c]← A[p] // Value parent node → current node
c← p // parent node → current node
p← bc/2c

A[c]← v // value → root of the (sub)tree

157

Remove the maximum

Replace the maximum by the lower right
element
Reestablish heap property: sink
successively (in the direction of the
greater child)
Worst case number of operations: O(log n)

21

20

16

3 2

12

8 11

18

15

14

17

20

16

14

3 2

12

8 11

18

15 17

158

Why this is correct: Recursive heap structure

A heap consists of two heaps:

22

20

16

3 2

12

8 11

18

15

14

17

159

Algorithm SiftDown(A, i, m)

Input: Array A with heap structure for the children of i. Last element m.
Output: Array A with heap structure for i with last element m.
while 2i ≤ m do

j ← 2i; // j left child
if j < m and A[j] < A[j + 1] then

j ← j + 1; // j right child with greater key

if A[i] < A[j] then
swap(A[i], A[j])
i← j; // keep sinking down

else
i← m; // sift down finished

160

Sort heap

A[1, ..., n] is a Heap.
While n > 1

swap(A[1], A[n])
SiftDown(A, 1, n− 1);
n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

161

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

162

Algorithm HeapSort(A, n)

Input: Array A with length n.
Output: A sorted.
// Build the heap.
for i← n/2 downto 1 do

SiftDown(A, i, n);

// Now A is a heap.
for i← n downto 2 do

swap(A[1], A[i])
SiftDown(A, 1, i− 1)

// Now A is sorted.

163

Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node 2 key comparisons.
⇒ sorting a heap costs in the worst case 2 log n comparisons.
Number of memory movements of sorting a heap also O(n log n).

164

Analysis: creating a heap
Calls to siftDown: n/2.
Thus number of comparisons and movements: v(n) ∈ O(n log n).
But mean length of the sift-down paths is much smaller:
We use that h(n) = dlog2 n + 1e = blog2 nc+ 1 für n > 0

v(n) =
blog2 nc∑

l=0
2l︸︷︷︸

number heaps on level l

·(blog2 nc+ 1− l︸ ︷︷ ︸
height heaps on level l

−1) =
blog2 nc∑

k=0
2blog2 nc−k · k

= 2blog2 nc ·
blog2 nc∑

k=0

k

2k
≤ n ·

∞∑
k=0

k

2k
≤ n · 2 ∈ O(n)

with s(x) :=
∑∞

k=0 kxk = x
(1−x)2 (0 < x < 1) and s(1

2) = 2

165

	Binary Search Trees
	Trees
	Search Trees
	Key Insertion
	Remove Key
	Tree Traversal

	Heaps

