
4. Algorithmen und Datenstrukturen

Algorithms and Data Structures, Overview
[Cormen et al, Kap. 1; Ottman/Widmayer, Kap. 1.1]

53

Algorithm

Algorithm

Well-defined procedure to compute output data from input data

54

Example Problem: Sorting
Input: A sequence of n numbers (comparable objects) (a1, a2, . . . , an)
Output: Permutation (a′1, a′2, . . . , a′n) of the sequence (ai)1≤i≤n, such that

a′1 ≤ a′2 ≤ · · · ≤ a′n

Possible input

(1, 7, 3), (15, 13, 12,−0.5), (999, 998, 997, 996, . . . , 2, 1), (1), () . . .

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the problem
instance. Often there are “good” and “bad” instances.

Therefore we consider algorithms sometimes ”in the average“ and most
often in the ”worst case“.

55

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
evaluation order: Topological Sorting
autocomletion and spell-checking: Dictionaries / Trees
Fast Lookup : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum Spanning
Tree, Simulated Annealing

56

Characteristics

Extremely large number of potential solutions
Practical applicability

57

Data Structures

A data structure is a particular way of
organizing data in a computer so that
they can be used e�ciently (in the
algorithms operating on them).
Programs = algorithms + data structures.

58

E�ciency

If computers were infinitely fast and had an infinite amount of memory ...
... then we would still need the theory of algorithms (only) for
statements about correctness (and termination).

Reality: resources are bounded and not free:
Computing time→ E�ciency
Storage space→ E�ciency

Actually, this course is nearly only about e�ciency.

59

Hard problems.

NP-complete problems: no known e�cient solution (the existence of
such a solution is very improbable – but it has not yet been proven that
there is none!)
Example: travelling salesman problem

This course is mostly about problems that can be solved e�ciently (in
polynomial time).

60

5. E�ciency of algorithms

E�ciency of Algorithms, Random Access Machine Model, Function Growth,
Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 | Ottman/Widmayer, Kap. 1.1]

61

E�ciency of Algorithms

Goals
Quantify the runtime behavior of an algorithm independent of the
machine.
Compare e�ciency of algorithms.
Understand dependece on the input size.

62

Programs and Algorithms

program

programming language

computer

algorithm

pseudo-code

computation model

implemented in

specified for

specified in

based on

Technology Abstraction

63

Technology Model

Random Access Machine (RAM) Model

Execution model: instructions are executed one after the other (on
one processor core).
Memory model: constant access time (big array)
Fundamental operations: computations (+,−,·,...) comparisons,
assignment / copy on machine words (registers), flow control
(jumps)
Unit cost model: fundamental operations provide a cost of 1.
Data types: fundamental types like size-limited integer or floating
point number.

64

For Dynamic Data Strcutures

Pointer Machine Model
Objects bounded in size can be dynamically allocated in constant
time
Fields (with word-size) of the objects can be accessed in constant
time 1.

top xn xn−1 x1 null

65

Asymptotic behavior

An exact running time of an algorithm can normally not be predicted even
for small input data.

We consider the asymptotic behavior of the algorithm.
And ignore all constant factors.

An operation with cost 20 is no worse than one with cost 1
Linear growth with gradient 5 is as good as linear growth with gradient
1.

66

Algorithms, Programs and Execution Time

Program: concrete implementation of an algorithm.
Execution time of the program: measurable value on a concrete machine.
Can be bounded from above and below.
Example 1

3GHz computer. Maximal number of operations per cycle (e.g. 8). ⇒ lower
bound.
A single operations does never take longer than a day⇒ upper bound.

From the perspective of the asymptotic behavior of the program, the
bounds are unimportant.

67

5.2 Function growth

O, Θ, Ω [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]

68

Superficially

Use the asymptotic notation to specify the execution time of algorithms.
We write Θ(n2) and mean that the algorithm behaves for large n like n2:
when the problem size is doubled, the execution time multiplies by four.

69

More precise: asymptotic upper bound

provided: a function g : N→ R.
Definition:1

O(g) = {f : N→ R|
∃ c > 0,∃n0 ∈ N :
∀ n ≥ n0 : 0 ≤ f(n) ≤ c · g(n)}

Notation:
O(g(n)) := O(g(·)) = O(g).

1Ausgesprochen: Set of all functions f : N→ R that satisfy: there is some (real
valued) c > 0 and some n0 ∈ N such that 0 ≤ f(n) ≤ n · g(n) for all n ≥ n0.

70

Graphic

g(n) = n2

f ∈ O(g)

h ∈ O(g)

n0

n

71

Converse: asymptotic lower bound

Given: a function g : N→ R.
Definition:

Ω(g) = {f : N→ R|
∃ c > 0,∃n0 ∈ N :
∀ n ≥ n0 : 0 ≤ c · g(n) ≤ f(n)}

72

Example

g(n) = n

f ∈ Ω(g)h ∈ Ω(g)

n0 n

73

Asymptotic tight bound

Given: function g : N→ R.
Definition:

Θ(g) := Ω(g) ∩ O(g).

Simple, closed form: exercise.

74

Example

g(n) = n2

f ∈ Θ(n2)

h(n) = 0.5 · n2

n

75

Notions of Growth

O(1) bounded array access
O(log logn) double logarithmic interpolated binary sorted sort
O(logn) logarithmic binary sorted search
O(
√
n) like the square root naive prime number test

O(n) linear unsorted naive search
O(n logn) superlinear / loglinear good sorting algorithms
O(n2) quadratic simple sort algorithms
O(nc) polynomial matrix multiply
O(2n) exponential Travelling Salesman Dynamic Programming
O(n!) factorial Travelling Salesman naively

76

Small n

2 3 4 5 6

20

40

60

lnn
n

n2

n4 2n

77

Larger n

5 10 15 20

0.2

0.4

0.6

0.8

1
·106

logn
n
n2

n4

2n

78

“Large” n

20 40 60 80 100

0.2

0.4

0.6

0.8

1
·1020

logn
n
n2n4

2n

79

Logarithms

10 20 30 40 50

200

400

600

800

1,000

n

n2

n3/2

logn

n logn

80

Time Consumption

Assumption 1 Operation = 1µs.

problem size 1 100 10000 106 109

log2 n 1µs 7µs 13µs 20µs 30µs

n 1µs 100µs 1/100s 1s 17 minutes

n log2 n 1µs 700µs 13/100µs 20s 8.5 hours

n2 1µs 1/100s 1.7 minutes 11.5 days 317 centuries

2n 1µs 1014 centuries ≈ ∞ ≈ ∞ ≈ ∞

81

Useful Tool

Theorem 2
Let f, g : N→ R+ be two functions, then it holds that

1. limn→∞
f(n)
g(n) = 0⇒ f ∈ O(g), O(f) (O(g).

2. limn→∞
f(n)
g(n) = C > 0 (C constant)⇒ f ∈ Θ(g).

3. f(n)
g(n) →n→∞∞⇒ g ∈ O(f), O(g) (O(f).

82

About the Notation

Common casual notation
f = O(g)

should be read as f ∈ O(g).
Clearly it holds that

f1 = O(g), f2 = O(g) 6⇒ f1 = f2!

n = O(n2), n2 = O(n2) but naturally n 6= n2.

We avoid this notation where it could lead to ambiguities.

83

Reminder: Java Collections / Maps

Collection

Queue List Set

SortedSet

Map

SortedMap

PriorityQueue

LinkedList

ArrayList

TreeSet LinkedHashSet

HashSet

TreeMap

LinkedHashMap

HashMap

interface

Klasse

84

ArrayList versus LinkedList

run time measurements for 10000 operations (on [code] expert)

ArrayList LinkedList
469µs 1787µs

37900µs 761µs
1840µs 2050µs
426µs 110600µs
31ms 301ms
38ms 141ms

228ms 1080ms
648µs 757µs

58075µs 609µs

85

Reminder: Decision

Order?

TreeMap

sorted

LinkedHashMap

ordererd

important

HashMap

not important

key-value

pairs

duplicates?

ArrayList

ran
dom

acc
ess

LinkedList

no
ra

nd
om

ac
ce

ss
PriorityQueue

by
priority

yes

Order?

TreeSet

sorted

LinkedHashSet

ordererd

important

HashSet

not important

no

Values

86

Asymptotic Runtimes (Java)

With our new language (Ω,O,Θ), we can now state the behavior of the
data structures and their algorithms more precisely
Asymptotic running times (Anticipation!)

Data structure Random
Access

Insert Next Insert
After
Element

Search

ArrayList Θ(1) Θ(1)A Θ(1) Θ(n) Θ(n)
LinkedList Θ(n) Θ(1) Θ(1) Θ(1) Θ(n)
TreeSet – Θ(logn) Θ(logn) – Θ(logn)
HashSet – Θ(1)P – – Θ(1)P
A = amortized, P=expected, otherwise worst case

87

Asymptotic Runtimes (Python)

Asymptotic running times
Data structure Random

Access
Insert Iteration Insert

After
Element

Search
x in S

list Θ(1) Θ(1)A Θ(n) Θ(n) Θ(n)
set – Θ(1)P Θ(n) – Θ(1)P
dict – Θ(1)P Θ(n) – Θ(1)P
A = amortized, P=expected, otherwise worst case

88

	Algorithmen und Datenstrukturen
	Efficiency of algorithms
	Efficiency of Algorithms
	Function growth

