
16. Dynamic Programming

Memoization, Optimal Substructure, Overlapping Sub-Problems,
Dependencies, General Procedure. Examples: Rod Cutting, Rabbits
[Ottman/Widmayer, Kap. 7.1, 7.4, Cormen et al, Kap. 15]

341



Fibonacci Numbers

(again)

Fn :=

n if n < 2
Fn−1 + Fn−2 if n ≥ 2.

Analysis: why ist the recursive algorithm so slow?

342



Algorithm FibonacciRecursive(n)

Input: n ≥ 0
Output: n-th Fibonacci number

if n < 2 then
f ← n

else
f ← FibonacciRecursive(n− 1) + FibonacciRecursive(n− 2)

return f

343



Analysis

T (n): Number executed operations.
n = 0, 1: T (n) = Θ(1)
n ≥ 2: T (n) = T (n− 2) + T (n− 1) + c.

T (n) = T (n− 2) + T (n− 1) + c ≥ 2T (n− 2) + c ≥ 2n/2c′ = (
√

2)nc′

Algorithm is exponential in n.

344



Reason (visual)

F47

F46

F45

F44 F43

F44

F43 F42

F45

F44

F43 F42

F43

F42 F41

Nodes with same values are evaluated (too) often.

345



Memoization

Memoization (sic) saving intermediate results.
Before a subproblem is solved, the existence of the corresponding
intermediate result is checked.
If an intermediate result exists then it is used.
Otherwise the algorithm is executed and the result is saved accordingly.

346



Memoization with Fibonacci

F47

F46

F45

F44 F43

F44

F45

Rechteckige Knoten wurden bereits ausgewertet.

347



Algorithm FibonacciMemoization(n)

Input: n ≥ 0
Output: n-th Fibonacci number

if n ≤ 2 then
f ← 1

else if ∃memo[n] then
f ← memo[n]

else
f ← FibonacciMemoization(n− 1) + FibonacciMemoization(n− 2)
memo[n]← f

return f

348



Analysis

Computational complexity:

T (n) = T (n− 1) + c = ... = O(n).

because after the call to f(n− 1), f(n− 2) has already been computed.
A di�erent argument: f(n) is computed exactly once recursively for each n.
Runtime costs: n calls with Θ(1) costs per call n · c ∈ Θ(n). The recursion
vanishes from the running time computation.
Algorithm requires Θ(n) memory.22

22But the naive recursive algorithm also requires Θ(n) memory implicitly.
349



Looking closer ...

... the algorithm computes the values of F1, F2, F3,. . . in the top-down
approach of the recursion.
Can write the algorithm bottom-up. This is characteristic for dynamic
programming.

350



Algorithm FibonacciBottomUp(n)

Input: n ≥ 0
Output: n-th Fibonacci number

F [1]← 1
F [2]← 1
for i← 3, . . . , n do

F [i]← F [i− 1] + F [i− 2]
return F [n]

351



Dynamic Programming: Idea

Divide a complex problem into a reasonable number of sub-problems
The solution of the sub-problems will be used to solve the more
complex problem
Identical problems will be computed only once

352



Dynamic Programming Consequence

Identical problems will be computed only once
⇒ Results are saved

We trade spee against

memory consumption

353



Dynamic Programming: Description

1. Use a DP-table with information to the subproblems.
Dimension of the entries? Semantics of the entries?

2. Computation of the base cases
Which entries do not depend on others?

3. Determine computation order.
In which order can the entries be computed such that dependencies are
fulfilled?

4. Read-out the solution
How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per
entry.

354



Dynamic Programing: Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2.
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3.
Computation order?

Fi with increasing i.

4.
Reconstruction of a solution?

Fn ist die n-te Fibonacci-Zahl.

355



Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by
utilizing the solutions of sub-problems. The problem provides optimal
substructure.
Divide-And-Conquer algorithms (such as Mergesort): sub-problems are
independent; their solutions are required only once in the algorithm.
DP: sub-problems are dependent. The problem is said to have
overlapping sub-problems that are required multiple-times in the
algorithm.
In order to avoid redundant computations, results are tabulated. For
sub-problems there must not be any circular dependencies.

356



Rod Cutting

Rods (metal sticks) are cut and sold.
Rods of length n ∈ N are available. A cut does not provide any costs.
For each length l ∈ N, l ≤ n known is the value vl ∈ R+

Goal: cut the rods such (into k ∈ N pieces) that

k∑
i=1

vli is maximized subject to
k∑

i=1
li = n.

357



Rod Cutting: Example

Possibilities to cut a rod of length 4 (without permutations)

Length 0 1 2 3 4
Price 0 2 3 8 9 ⇒ Best cut: 3 + 1 with value 10.

358



Wie findet man den DP Algorithms

0. Exact formulation of the wanted solution
1. Define sub-problems (and compute the cardinality)
2. Guess / Enumerate (and determine the running time for guessing)
3. Recursion: relate sub-problems
4. Memoize / Tabularize. Determine the dependencies of the

sub-problems
5. Solve the problem

Running time = #sub-problems × time/sub-problem

359



Structure of the problem

0. Wanted: rn = maximal value of rod (cut or as a whole) with length n.
1. sub-problems: maximal value rk for each 0 ≤ k < n

2. Guess the length of the first piece
3. Recursion

rk = max{vi + rk−i : 0 < i ≤ k}, k > 0
r0 = 0

4. Dependency: rk depends (only) on values vi, 1 ≤ i ≤ k and the
optimal cuts ri, i < k

5. Solution in rn

360



Algorithm RodCut(v,n)

Input: n ≥ 0, Prices v
Output: best value

q ← 0
if n > 0 then

for i← 1, . . . , n do
q ← max{q, vi + RodCut(v, n− i)};

return q

Running time T (n) =
∑n−1

i=0 T (i) + c ⇒23 T (n) ∈ Θ(2n)

23T (n) = T (n− 1) +
∑n−2

i=0 T (i) + c = T (n− 1) + (T (n− 1)− c) + c = 2T (n− 1) (n > 0)
361



Recursion Tree

5

4

3

2

1

1

2

1

1

3

2

1

1

2

1

1

362



Algorithm RodCutMemoized(m, v, n)

Input: n ≥ 0, Prices v, Memoization Table m
Output: best value

q ← 0
if n > 0 then

if ∃ m[n] then
q ← m[n]

else
for i← 1, . . . , n do

q ← max{q, vi + RodCutMemoized(m, v, n− i)};
m[n]← q

return q

Running time ∑n
i=1 i = Θ(n2)

363



Subproblem-Graph

Describes the mutual dependencies of the subproblems

4 3 2 1 0

and must not contain cycles

364



Construction of the Optimal Cut

During the (recursive) computation of the optimal solution for each
k ≤ n the recursive algorithm determines the optimal length of the first
rod
Store the lenght of the first rod in a separate table of length n

365



Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2.
Which entries do not depend on other entries?

Value r0 is 0

3.
Computation order?

ri, i = 1, . . . , n.

4.
Reconstruction of a solution?

rn is the best value for the rod of length n.

366



Rabbit!

A rabbit sits on cite (1, 1) of an
n× n grid. It can only move to
east or south. On each path-
way there is a number of car-
rots. How many carrots does
the rabbit collect maximally?

1, 1

1, 2

1, 3

1, 4

2, 1

2, 2

2, 3

2, 4

3, 1

3, 2

3, 3

3, 4

4, 1

4, 2

4, 3

4, 4

3

4

0

4

1

3

2

1

4

1

0

4

1

1

4

4

1

3

1

1

3

3

1

0

367



Rabbit!

Number of possible paths?
Choice of n− 1 ways to south out of 2n− 2
ways overal.

(
2n− 2
n− 1

)
∈ Ω(2n)

⇒ No chance for a naive algorithm The path 100011
(1:to south, 0: to east)

368



Recursion

Wanted: T0,0 = maximal number carrots from (0, 0) to (n, n).
Let w(i,j)−(i′,j′) number of carrots on egde from (i, j) to (i′, j′).
Recursion (maximal number of carrots from (i, j) to (n, n)

Tij =


max{w(i,j)−(i,j+1) + Ti,j+1, w(i,j)−(i+1,j) + Ti+1,j}, i < n, j < n

w(i,j)−(i,j+1) + Ti,j+1, i = n, j < n

w(i,j)−(i+1,j) + Ti+1,j, i < n, j = n

0 i = j = n

369



Graph of Subproblem Dependencies

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

370



Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

Table T with size n × n. Entry at i, j provides the maximal number of
carrots from (i, j) to (n, n).

2.
Which entries do not depend on other entries?

Value Tn,n is 0

3.
Computation order?

Ti,j with i = n ↘ 1 and for each i: j = n ↘ 1, (or vice-versa: j = n ↘ 1
and for each j: i = n↘ 1).

4.
Reconstruction of a solution?

T1,1 provides the maximal number of carrots. 371


	Dynamic Programming
	Fibonacci Numbers
	Memoization
	General Procedure
	Rod Cutting
	Rabbit (Longest Path)


