14. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT Union-Find,
Algorithm Jarnik, Prim, Dijkstra [Ottman/Widmayer, Kap. 9.6, 6.2, 61, Cormen
et al, Kap. 23, 19]

297

Given: Undirected, weighted, connected graph G = (V, E, ¢).
Wanted: Minimum Spanning Tree T' = (V, E’): connected, cycle-free
subgraph E’ C E, such that 3 .cp c(e) minimal.

/\/
N

298

Application Examples

m Network-Design: find the cheapest / shortest network that connects all
nodes.

m Approximation of a solution of the travelling salesman problem: find a
round-trip, as short as possible, that visits each node once. '

8The best known algorithm to solve the TS problem exactly has exponential running

time.
299

Greedy Procedure

m Greedy algorithms compute the solution stepwise choosing locally
optimal solutions.

m Most problems cannot be solved with a greedy algorithm.

m The Minimum Spanning Tree problem can be solved with a greedy
strategy.

300

Greedy Idea (Kruskal, 1956)

Construct T' by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

301

Greedy Idea (Kruskal, 1956)

Construct T' by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

301

Greedy Idea (Kruskal, 1956)

Construct T' by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

301

Greedy Idea (Kruskal, 1956)

Construct T' by adding the cheapest edge that does not generate a cycle.

SN
N

u X

W

(Solution is not unique.)

301

Greedy Idea (Kruskal, 1956)

Construct T' by adding the cheapest edge that does not generate a cycle.

S
N

u X

W

(Solution is not unique.)

301

Greedy Idea (Kruskal, 1956)

Construct T' by adding the cheapest edge that does not generate a cycle.

(Solution is not unique.)

301

Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V, E, ¢)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) < ... < c(ep,)
A0
for k=1 to |E| do
if (V,AU{ex}) acyclic then
A+ Au{er}

return (V, A, c)

302

Implementation Issues

Consider a set of sets i = A; C V. To identify cuts and cycles: membership
of the both ends of an edge to sets?

o

303

Implementation Issues

General problem: partition (set of subsets) .e.g.

{{1,2,3,9},{7,6,4}, {5,8}, {10}}

Required: Abstract data type “Union-Find” with the following operations
m Make-Set(:): create a new set represented by i.

m Find(e): name of the set i that contains e.

m Union(s, 5): union of the sets with names i and j.

304

Union-Find Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V, E, ¢)

Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) < ... < c(ep)
A0
for k=1to |V| do
. MakeSet(k)
for k=1tom do
(u,v) < eg,
if Find(u) # Find(v) then
Union(Find(u), Find(v))
A<+ AUeg
else

return (V, A, c)

// conceptual: R <+ RU ey

305

Implementation Union-Find

Idea: tree for each subset in the partition,e.g.

{{1,2,3,9},{7,6,4},{5,8},{10}}

roots = names (representatives) of the sets,
trees = elements of the sets

306

Implementation Union-Find

12 62 5 102

/N TN T
2 3 7 4 8
T
9
Representation as array:
Index 1 2 3 45 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

307

Implementation Union-Find

Make-Set(i) p[i] < i; return i

Find(:) while (p[i] # i) do i < p]i]
return ¢

Union(z’,j) Y ply] 4

9i and j need to be names (roots) of the sets. Otherwise use Union(Find(),Find(5))
308

Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8,7), Union(7,6), Union(6, 5), ...

Index

1 23 456 78 ..
Parent 1 1 2 3 4 5 6 7 ..
©

Worst-case running time of Find in

(n).

309

Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional size
information (array) g

Make-Set(i) pli] < i; g[i] « 1; return i

if g[j] > g[i] then swap(i, j)
Union(i,7) plj] i

if g[i] = g[j] then g[i] + g[i] + 1

= Tree depth (and worst-case running time for Find) in ©(logn)

310

Further improvement

Link all nodes to the root when Find is called.
Find(7):
j 1
while (p[i] # i) do i < p]i]
while (j # i) do
t<J
j < plJ]
plt] <
return ¢
Cost: amortised nearly constant (inverse of the Ackermann-function).?°

20we do not go into details here.
mnm

Running time of Kruskal's Algorithm

m Sorting of the edges: O(|E|log |E|) = O(|E|log |V]). *

m Initialisation of the Union-Find data structure ©(|V])

m |E|x Union(Find(z),Find(y)): O(|E|log |E|) = O(|E|log |V).
Overal O(|E|log |V]).

2'because G is connected: |V| < |E| < |V|?

312

Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

ldea: start with some v € V and grow the spanning tree from here by the
acceptance rule.

A0

S+ {’Uo}

for i < 1 to |V| do
Choose cheapest (u,v) mitu e S, v ¢ S
A+ AU{(u,v)}
S« SU{v} // (Coloring)

Remark: a union-Find data structure is not required. It suffices to color
nodes when they are added to S.

313

Trivially O(|V| - | E]).
Improvement (like with Dijkstra’s ShortestPath)
m With Min-Heap: costs

® Initialization (node coloring) O(|V])
m |V|x ExtractMin = O(|V|log|V]),
B |E|x Insert or DecreaseKey: O(|E|log |V]),

O(|E] - log [V])

314

	Minimum Spanning Trees
	Motivation
	Greedy
	Algorithm Kruskal
	Abstract Data Type Union-Find
	Algorithm Jarnik, Prim, Dijkstra

