
14. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT Union-Find,
Algorithm Jarnik, Prim, Dijkstra [Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen
et al, Kap. 23, 19]

297

Problem

Given: Undirected, weighted, connected graph G = (V, E, c).
Wanted: Minimum Spanning Tree T = (V, E ′): connected, cycle-free
subgraph E ′ ⊂ E, such that ∑

e∈E′ c(e) minimal.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

298

Application Examples

Network-Design: find the cheapest / shortest network that connects all
nodes.
Approximation of a solution of the travelling salesman problem: find a
round-trip, as short as possible, that visits each node once. 18

18The best known algorithm to solve the TS problem exactly has exponential running
time.

299

Greedy Procedure

Greedy algorithms compute the solution stepwise choosing locally
optimal solutions.
Most problems cannot be solved with a greedy algorithm.
The Minimum Spanning Tree problem can be solved with a greedy
strategy.

300

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

301

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

301

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

301

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

301

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

301

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

301

Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V, E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |E| do

if (V, A ∪ {ek}) acyclic then
A← A ∪ {ek}

return (V, A, c)

302

Implementation Issues

Consider a set of sets i ≡ Ai ⊂ V . To identify cuts and cycles: membership
of the both ends of an edge to sets?

303

Implementation Issues

General problem: partition (set of subsets) .e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}
Required: Abstract data type “Union-Find” with the following operations

Make-Set(i): create a new set represented by i.
Find(e): name of the set i that contains e .
Union(i, j): union of the sets with names i and j.

304

Union-Find Algorithm MST-Kruskal(G)
Input: Weighted Graph G = (V, E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |V | do

MakeSet(k)

for k = 1 to m do
(u, v)← ek

if Find(u) 6= Find(v) then
Union(Find(u),Find(v))
A← A ∪ ek

else // conceptual: R← R ∪ ek

return (V, A, c)

305

Implementation Union-Find

Idea: tree for each subset in the partition,e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}

1

2 3

9

6

7 4

5

8

10

roots = names (representatives) of the sets,
trees = elements of the sets

306

Implementation Union-Find

1

2 3

9

6

7 4

5

8

10

Representation as array:

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

307

Implementation Union-Find

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

Make-Set(i) p[i]← i; return i

Find(i) while (p[i] 6= i) do i← p[i]
return i

Union(i, j) 19 p[j]← i;

19i and j need to be names (roots) of the sets. Otherwise use Union(Find(i),Find(j))
308

Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8, 7), Union(7, 6), Union(6, 5), ...

Index 1 2 3 4 5 6 7 8 ..
Parent 1 1 2 3 4 5 6 7 ..

Worst-case running time of Find in Θ(n).

309

Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional size
information (array) g

Make-Set(i) p[i]← i; g[i]← 1; return i

Union(i, j)
if g[j] > g[i] then swap(i, j)
p[j]← i
if g[i] = g[j] then g[i]← g[i] + 1

⇒ Tree depth (and worst-case running time for Find) in Θ(log n)

310

Further improvement

Link all nodes to the root when Find is called.
Find(i):
j ← i
while (p[i] 6= i) do i← p[i]
while (j 6= i) do

t← j
j ← p[j]
p[t]← i

return i

Cost: amortised nearly constant (inverse of the Ackermann-function).20

20We do not go into details here.
311

Running time of Kruskal’s Algorithm

Sorting of the edges: Θ(|E| log |E|) = Θ(|E| log |V |). 21

Initialisation of the Union-Find data structure Θ(|V |)
|E|× Union(Find(x),Find(y)): O(|E| log |E|) = O(|E| log |V |).

Overal Θ(|E| log |V |).

21because G is connected: |V | ≤ |E| ≤ |V |2
312

Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some v ∈ V and grow the spanning tree from here by the
acceptance rule.

A← ∅
S ← {v0}
for i← 1 to |V | do

Choose cheapest (u, v) mit u ∈ S, v 6∈ S
A← A ∪ {(u, v)}
S ← S ∪ {v} // (Coloring)

S

V \ S

Remark: a union-Find data structure is not required. It su�ces to color
nodes when they are added to S.

313

Running time

Trivially O(|V | · |E|).
Improvement (like with Dijkstra’s ShortestPath)

With Min-Heap: costs

Initialization (node coloring) O(|V |)
|V |× ExtractMin = O(|V | log |V |),
|E|× Insert or DecreaseKey: O(|E| log |V |),

O(|E| · log |V |)

314

	Minimum Spanning Trees
	Motivation
	Greedy
	Algorithm Kruskal
	Abstract Data Type Union-Find
	Algorithm Jarnik, Prim, Dijkstra

