
14. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT Union-Find,
Algorithm Jarnik, Prim, Dijkstra [Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen
et al, Kap. 23, 19]
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Problem

Given: Undirected, weighted, connected graph G = (V, E, c).
Wanted: Minimum Spanning Tree T = (V, E ′): connected, cycle-free
subgraph E ′ ⊂ E, such that ∑

e∈E′ c(e) minimal.
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Application Examples

Network-Design: find the cheapest / shortest network that connects all
nodes.
Approximation of a solution of the travelling salesman problem: find a
round-trip, as short as possible, that visits each node once. 18

18The best known algorithm to solve the TS problem exactly has exponential running
time.
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Greedy Procedure

Greedy algorithms compute the solution stepwise choosing locally
optimal solutions.
Most problems cannot be solved with a greedy algorithm.
The Minimum Spanning Tree problem can be solved with a greedy
strategy.
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Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.
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(Solution is not unique.)
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Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V, E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |E| do

if (V, A ∪ {ek}) acyclic then
A← A ∪ {ek}

return (V, A, c)
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Implementation Issues

Consider a set of sets i ≡ Ai ⊂ V . To identify cuts and cycles: membership
of the both ends of an edge to sets?
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Implementation Issues

General problem: partition (set of subsets) .e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}
Required: Abstract data type “Union-Find” with the following operations

Make-Set(i): create a new set represented by i.
Find(e): name of the set i that contains e .
Union(i, j): union of the sets with names i and j.
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Union-Find Algorithm MST-Kruskal(G)
Input: Weighted Graph G = (V, E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |V | do

MakeSet(k)

for k = 1 to m do
(u, v)← ek

if Find(u) 6= Find(v) then
Union(Find(u),Find(v))
A← A ∪ ek

else // conceptual: R← R ∪ ek

return (V, A, c)
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Implementation Union-Find

Idea: tree for each subset in the partition,e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}
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roots = names (representatives) of the sets,
trees = elements of the sets

306



Implementation Union-Find
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Representation as array:

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10
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Implementation Union-Find

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

Make-Set(i) p[i]← i; return i

Find(i) while (p[i] 6= i) do i← p[i]
return i

Union(i, j) 19 p[j]← i;

19i and j need to be names (roots) of the sets. Otherwise use Union(Find(i),Find(j))
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Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8, 7), Union(7, 6), Union(6, 5), ...

Index 1 2 3 4 5 6 7 8 ..
Parent 1 1 2 3 4 5 6 7 ..

Worst-case running time of Find in Θ(n).
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Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional size
information (array) g

Make-Set(i) p[i]← i; g[i]← 1; return i

Union(i, j)
if g[j] > g[i] then swap(i, j)
p[j]← i
if g[i] = g[j] then g[i]← g[i] + 1

⇒ Tree depth (and worst-case running time for Find) in Θ(log n)
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Further improvement

Link all nodes to the root when Find is called.
Find(i):
j ← i
while (p[i] 6= i) do i← p[i]
while (j 6= i) do

t← j
j ← p[j]
p[t]← i

return i

Cost: amortised nearly constant (inverse of the Ackermann-function).20

20We do not go into details here.
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Running time of Kruskal’s Algorithm

Sorting of the edges: Θ(|E| log |E|) = Θ(|E| log |V |). 21

Initialisation of the Union-Find data structure Θ(|V |)
|E|× Union(Find(x),Find(y)): O(|E| log |E|) = O(|E| log |V |).

Overal Θ(|E| log |V |).

21because G is connected: |V | ≤ |E| ≤ |V |2
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Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some v ∈ V and grow the spanning tree from here by the
acceptance rule.

A← ∅
S ← {v0}
for i← 1 to |V | do

Choose cheapest (u, v) mit u ∈ S, v 6∈ S
A← A ∪ {(u, v)}
S ← S ∪ {v} // (Coloring)

S

V \ S

Remark: a union-Find data structure is not required. It su�ces to color
nodes when they are added to S.
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Running time

Trivially O(|V | · |E|).
Improvement (like with Dijkstra’s ShortestPath)

With Min-Heap: costs

Initialization (node coloring) O(|V |)
|V |× ExtractMin = O(|V | log |V |),
|E|× Insert or DecreaseKey: O(|E| log |V |),

O(|E| · log |V |)
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