# 14. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT Union-Find, Algorithm Jarnik, Prim, Dijkstra [Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

#### Problem

**Given:** Undirected, weighted, connected graph G = (V, E, c). **Wanted:** Minimum Spanning Tree T = (V, E'): connected, cycle-free subgraph  $E' \subset E$ , such that  $\sum_{e \in E'} c(e)$  minimal.



- Network-Design: find the cheapest / shortest network that connects all nodes.
- Approximation of a solution of the travelling salesman problem: find a round-trip, as short as possible, that visits each node once. <sup>18</sup>

<sup>&</sup>lt;sup>18</sup>The best known algorithm to solve the TS problem exactly has exponential running time.

- Greedy algorithms compute the solution stepwise choosing locally optimal solutions.
- Most problems cannot be solved with a greedy algorithm.
- The Minimum Spanning Tree problem can be solved with a greedy strategy.













**Input:** Weighted Graph G = (V, E, c)**Output:** Minimum spanning tree with edges A.

```
Sort edges by weight c(e_1) \leq ... \leq c(e_m)

A \leftarrow \emptyset

for k = 1 to |E| do

\downarrow if (V, A \cup \{e_k\}) acyclic then

\downarrow A \leftarrow A \cup \{e_k\}
```

return (V, A, c)

Consider a set of sets  $i \equiv A_i \subset V$ . To identify cuts and cycles: membership of the both ends of an edge to sets?



General problem: partition (set of subsets) .e.g.  $\{\{1, 2, 3, 9\}, \{7, 6, 4\}, \{5, 8\}, \{10\}\}$ 

Required: Abstract data type "Union-Find" with the following operations

- Make-Set(*i*): create a new set represented by *i*.
- Find(e): name of the set i that contains e.
- Union(i, j): union of the sets with names *i* and *j*.

## Union-Find Algorithm MST-Kruskal(G)

```
Input: Weighted Graph G = (V, E, c)
Output: Minimum spanning tree with edges A.
```

```
Sort edges by weight c(e_1) \leq ... \leq c(e_m)
A \leftarrow \emptyset
for k = 1 to |V| do
    MakeSet(k)
for k = 1 to m do
    (u,v) \leftarrow e_k
    if Find(u) \neq Find(v) then
         Union(Find(u), Find(v))
        A \leftarrow A \cup e_k
    else
```

return (V, A, c)

// conceptual:  $R \leftarrow R \cup e_k$ 

ldea: tree for each subset in the partition, e.g.  $\{\{1,2,3,9\},\{7,6,4\},\{5,8\},\{10\}\}$ 



roots = names (representatives) of the sets, trees = elements of the sets

## Implementation Union-Find



Representation as array:

| Index  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|--------|---|---|---|---|---|---|---|---|---|----|
| Parent | 1 | 1 | 1 | 6 | 5 | 6 | 5 | 5 | 3 | 10 |

| Index  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|--------|---|---|---|---|---|---|---|---|---|----|
| Parent | 1 | 1 | 1 | 6 | 5 | 6 | 5 | 5 | 3 | 10 |

| Make-Set(i)                                | $p[i] \leftarrow i$ ; return $i$                           |
|--------------------------------------------|------------------------------------------------------------|
| Find( <i>i</i> )                           | while $(p[i] \neq i)$ do $i \leftarrow p[i]$<br>return $i$ |
| Union( <i>i</i> , <i>j</i> ) <sup>19</sup> | $p[j] \leftarrow i;$                                       |

<sup>&</sup>lt;sup>19</sup>i and j need to be names (roots) of the sets. Otherwise use Union(Find(i),Find(j))

Tree may degenerate. Example: Union(8,7), Union(7,6), Union(6,5), ...

Worst-case running time of Find in  $\Theta(n)$ .

### Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional size information (array) g

Make-Set(*i*)  $p[i] \leftarrow i; g[i] \leftarrow 1;$  return *i* 

 $\begin{array}{ll} & \text{if } g[j] > g[i] \text{ then } \operatorname{swap}(i,j) \\ & p[j] \leftarrow i \\ & \text{if } g[i] = g[j] \text{ then } g[i] \leftarrow g[i] + 1 \end{array}$ 

 $\Rightarrow$  Tree depth (and worst-case running time for Find) in  $\Theta(\log n)$ 

Link all nodes to the root when Find is called. Find(*i*):

```
\begin{array}{l} j \leftarrow i \\ \text{while } (p[i] \neq i) \text{ do } i \leftarrow p[i] \\ \text{while } (j \neq i) \text{ do} \\ \\ \begin{array}{c} t \leftarrow j \\ j \leftarrow p[j] \\ p[t] \leftarrow i \end{array} \end{array}
```

return i

Cost: amortised *nearly* constant (inverse of the Ackermann-function).<sup>20</sup>

<sup>&</sup>lt;sup>20</sup>We do not go into details here.

### Running time of Kruskal's Algorithm

- Sorting of the edges:  $\Theta(|E|\log|E|) = \Theta(|E|\log|V|)$ .<sup>21</sup>
- Initialisation of the Union-Find data structure  $\Theta(|V|)$
- $|E| \times$  Union(Find(x),Find(y)):  $\mathcal{O}(|E| \log |E|) = \mathcal{O}(|E| \log |V|)$ . Overal  $\Theta(|E| \log |V|)$ .

<sup>&</sup>lt;sup>21</sup>because G is connected:  $|V| \le |E| \le |V|^2$ 

## Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some  $v \in V$  and grow the spanning tree from here by the acceptance rule.

 $\begin{array}{l} A \leftarrow \emptyset \\ S \leftarrow \{v_0\} \\ \text{for } i \leftarrow 1 \text{ to } |V| \text{ do} \\ \\ & \left| \begin{array}{c} \text{Choose cheapest } (u, v) \text{ mit } u \in S, v \notin S \\ A \leftarrow A \cup \{(u, v)\} \\ S \leftarrow S \cup \{v\} \ // \text{ (Coloring)} \end{array} \right. \end{array}$ 



Remark: a union-Find data structure is not required. It suffices to color nodes when they are added to *S*.

Trivially  $\mathcal{O}(|V| \cdot |E|)$ .

Improvement (like with Dijkstra's ShortestPath)

■ With Min-Heap: costs

- Initialization (node coloring)  $\mathcal{O}(|V|)$
- $\blacksquare |V| \times \mathsf{ExtractMin} = \mathcal{O}(|V| \log |V|),$
- $\blacksquare \ |E| \times \text{ Insert or DecreaseKey: } \mathcal{O}(|E|\log|V|)\text{,}$

 $\mathcal{O}(|E| \cdot \log |V|)$