Felix Friedrich & Hermann Lehner

Computer Science |l
Course at D-BAUG, ETH Zurich

Spring 2020

1. Introduction

Objectives of this Course

Goals of the course

m Understand the design and analysis of fundamental algorithms and
data structures.

m Understand how an algorithmic problem is mapped to a sufficiently
efficient computer program.

Contents

~-

Software Engineering

Java To Python Introduction
Python Datastructures

data structures / algorithms

The notion invariant, cost model, Landau notation
algorithms design, induction, divide & conquer
searching and sorting
dictionaries: hashing and search trees, balanced trees
dynamic programming
fundamental graph algorithms
Shortest paths, maximum flow

~

2. From Java to Python

First Python Program, Transfer Java — Python, Dynamic Data Structures in
Python

Learning Objectives

m see a new programming language (Python) and learn how to transfer
from one programming language to another

m learn the most important differences between Java and Python, both
from a syntactical and semantical point of view

m learn about the basic data types of Python (list, set, dict, tuple) and
operations leveraging the use of such data types

m get used to the new programming language and environment (Python)
by re-implementing known algorithms

First Java Program

public class Hello {
public static void main (Stringl[] args) {
System.out.print ("Hello World!");
}
}

First Python Program

print("Hello World!")

Comments

Comments are preceded by a #

prints ’Hello World!’ to the comsole
print("Hello World!")

Formatting Matters: Statements

m Whitespace is relevant

m Each line represents a statement
m So, exactly one Statement per line
m Comments start with #

Example program with two statements:

two print-statements
print ("Hurray, finally ...")
print("... no Semicolons!")

Formatting Matters: Blocks

m Blocks must be indented.

m All indented statements are part of a block. The block ends as soon as

the indentation ends.
m Start of a Block is marked by a colon “:

in Python

while i > O:
x=x+1/1i
i=1i-1

print(x)

”n

// in Java

while (i > 0) {
x=x+1.0/ i;
i=1i-1;

}

System.out.print (x)

20

Literals: Numbers

m integer: 42, -5, Ox1b, 0033, 7729684762313578932578932
Arbitrary precise integer numbers

m float: -0.1, 34.567e-4
Like double in Java, but precision depends on platform (CPU/ operating

system)
m complex: 2 + 3j, (0.21 - 1.2j)
Complex numbers in the form a+bj. Optional round parentheses.

21

Literals: Booleans

B True
B False

22

Literals: Strings

B ’a single quoted string\nand a second line’
B "a doube quoted string\nand a second line"
m Multi-line strings (tripple double quotes):

"""a multiline string
and a second line"""

23

Literals: Sequences

m arrays: There are no primitive arrays in Python

m lists: [17, True, "abc"], []
Mutable ordered sequence of 0 or more Values of arbitrary types.

m tuples: (17, True, "abc"), (42,)
Immutable ordered sequence of 1 or more Values of arbitrary types.

24

Literals: Collections

m dicts: { "a": 42, "b": 27, False: 0 }, {}
Mutable Key-Value store. Keys and values may have arbitrary types.

m sets: {17, True, "abc"}, {42}
Mutable unordered sequence of 0 or more Values of arbitrary types. No
duplicates.

25

Variables

m Variables are automatically created upon the first assignment

m The type of a variable is not checked upon assignment. That is, values of
different types can be assigned to a variable over time.

m Assignment of values with the assignment operator: =
m Assignment to multiple variables with tuples

a = "Ein Text" X, y =4, 5

int # prints: Ein Text RN
pr1n4éa) prints: Bin fex print(x) # prints: 4
a=

int # ints: 5
print(a) # prints: 42 print(y) # prints

26

Variables

m Variables must always be assigned first before it's possible to read their
value

Assume b never got a value assigned:
a=>b

Results in the following error
NameError: name 'b’ is not defined

27

Numeric and Boolean Operators

Numeric operators asin Java: +, -, *, /, %, *x, //

Caution: “ / " always results in a floating-point number

x: Power function, a**b = a’.

//: Integer division, 5//2 results in 2.

Comparison operators as in Java: ==, >=, <=, >, <, I=

Logical Operators: and, or, not

Membership Operator: “ in " Determines if a value is in a list, set or
string.

m |dentity Operator: “ is " Checks if two variables point to the same object.

28

Input/Output

m Reading of inputs using input ()

m A prompt can be provided.

m Output using print(...)

B print accepts one or more arguments and prints them separated with a
space

name = input("What is your name: ")
print("Hello", name)

29

Input/Output

m Input is always read as string

m To read a number, the input must be converted to a number first

m No implicit conversion happens

m Explicit conversion using: int(), float(), complex(), list(), ..

i = int(input("Enter a number: "))
print("The", i,"th power of two is", 2%*i)

30

Conditions

m No parentheses required around the test
m elif to test another case
m Mind the indentation!

a = int(input("Enter a number: "))
if a == 42:
print ("Naturally, the answer")
elif a == 28:
print ("A perfect number, good choice")
else:
print(a, "is just some boring number")

31

While-Loops

The well-known Collaz-Folge

a = int(input("Enter a number: "))
while a != 1:
if a % 2 == 0:
a=a// 2
else:
a=ax*x3d+1
print(a, end=’ ’)

32

For-Loops

m For-Loops work differently than in Java
m Iterates over the elements of the given set

some_list = [14, ’lala’, 22, True, 6]
total = 0;
for item in some_list:
if type(item) == int:
total += item
print("Total of the numbers is", total)

33

For-Loops over a value range

m The function range(start, end, step) creates a list of values, starting
with start until end - exclusive. Stepsize is step.

m Step size is 1 if the third argument is omitted.

the following loop prints "1 2 3 4"
for i in range(1,5):
print(i, end=’ ’)

the following loop prints "10 8 6 4 2"
for i in range(10, 0, -2):
print(i, end=’ ’)

34

Methods

m The Cookie Calculator revisited

def readInt(prompt, atleast = 1):

"""Prompt for a number greater O (or min, if specified)"""
number = 0;
while number < atleast:

number = int(input(prompt))

if (number < atleast):

print("Too small, pick a number larger than", atleast)

return number

kids = readInt("Kids: ")

cookies = readInt("Cookies: ", atleast=kids)
print("Each Kid gets", cookies // kids, "cookies.")
print ("Papa gets", cookies % kids, "cookies.")

35

Lists: Basic Operations

m Element-Access (0-based): a[2] points to the third element.

m Negative indices count from the last element!

a=1[3,7, 4]
print(al[-1]) # prints ’4’

m Add value to the tail: a.append (12)
m Test if an elementis in a collection:

if 12 in a:
print(’12 is in the list, we just added it before’)

m Anzahl Elemente in einer Collection: 1en(a)

36

Lists: Slicing

m Slicing: address partition: a[start:end]
m a and/or b are positive or negative indices.
B end is not inclusive

a=1[1,2, 3, 4, 5, 6, 7, 8, 9]
print(a[2:4]) # [3, 4]
print(a[3:-3]) # [4, 5, 6]
print(a[-3:-1]) # [7, 8]
print(al[5:]) # [6, 7, 8, 9]
print(al:3]) # [1, 2, 3]

Dictionaries

Dictionaries are very important primitive data structures in Python

m Easy and efficient possibility to name and group several fields of data
m Build hierarchical data structures by nesting

m Accessing elements using [] Operator

record = { ’Firstname’: ’Hermann’, ’Lastname’:’Lehner’,
’Salary’: 420000, ’Mac User’: True }
record[’Salary’] = 450000
if record[’Mac User’]:
print(’... one more thing!’)

38

Dynamic Data Structures with Dicts

tree = {
’key’: 8,
left’ @ {

8
’key’: 4, ’left’ : Nome, ’right’: None ///// \\\\\
4 13

1,

‘right’: { // \\
’key’: 13, 10 19
’left’ @ {

’key’: 10, ’left’ : None, ’right’: None
1,
‘right’: {

’key’: 19, ’left’ : Nome, ’right’: None
}

39

Dynamic Data Structures with Dicts

m Working with Dicts (Examples)

1 = tree[’left’] # assign left subtree to variable 1
1[’key’] = 6 # changes key from 4 to 6

if 1[’left’] is None: # proper way to test against None

print("There is no left child here...")
else:

print("Value of left subtree is", 1[’left’][’key’]

40

Dynamic Data Structures with Classes

class Node:
def __init__(self, k, 1=None, r=None):
self .key, self.left, self.right =k, 1, r

4/////63\\\\\13

16// \\H9

create the tree depicted on the right
rightSubtree = Node(13, 1=Node(10), r=Node(19))
tree = Node(8, 1=Node(4), r=rightSubtree)

an example query
print(tree.right.right.key) # prints: 19

4

Modules

Python has a vast amount of libraries in form of modules that can be
Imported.

m Importaing a whole module:

import math from math import *
x = math.sqrt(4) x = sqrt(4)

m Importaing parts of a module:

from datetime import date
t = date.today()

42

	Introduction
	From Java to Python

