
Felix Friedrich & Hermann Lehner

Computer Science II
Course at D-BAUG, ETH Zurich
Spring 2020

Welcome!
Course homepage

http://lec.inf.ethz.ch/baug/informatik2
The team:

Lecturers Felix Friedrich
Hermann Lehner

Assistants Prashanth Chandran
Sverrir Thorgeirsson
Vu Nguyen
Jan Osusky
Michael Seeber

Back-o�ce Katja Wol�

1

http://lec.inf.ethz.ch/baug/informatik2

Exercises
Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

issuance preliminary discussion
submission

discussion

V Ü V Ü

Exercises availabe at lectures.
Preliminary discussion in the following recitation session
Solution of the exercise until two days before the next recitation session.
Dicussion of the exercise in the next recitation session.

2

Exercises

The solution of the weekly exercises is voluntary but stronly
recommended.

3

It is so simple!

For the exercises we use an online development environment that
requires only a browser, internet connection and your ETH login.

If you do not have access to a computer: there are a a lot of computers publicly
accessible at ETH.

4

Literature

Algorithmen und Datenstrukturen, T. Ottmann, P. Widmayer,
Spektrum-Verlag, 5. Auflage, 2011
Algorithmen - Eine Einführung, T. Cormen, C. Leiserson, R. Rivest, C. Stein,
Oldenbourg, 2010
Introduction to Algorithms, T. Cormen, C. Leiserson, R. Rivest, C. Stein , 3rd
ed., MIT Press, 2009
Algorithmen Kapieren, Aditya Y. Bhargava, MITP, 2019.

5

Exams

The exam will cover
Lectures content (lectures, handouts)
Exercise content (recitation hours, exercise tasks).

6

Exams

Written exam.
We will test your practical skills (algorithmic and programming skills) and
theoretical knowledge (background knowledge, systematics).

6

O�er

Doing the weekly exercise series→ bonus of maximally 0.25 of a grade
points for the exam.
The bonus is proportional to the achieved points of specially marked
bonus-task. The full number of points corresponds to a bonus of 0.25 of
a grade point.
The admission to the specially marked bonus tasks can depend on the
successul completion of other exercise tasks. The achieved grade bonus
expires as soon as the course has been given again.

7

O�er (concretely)

3 bonus exercises in total; 2/3 of the points su�ce for the exam bonus
of 0.25 marks
You can, e.g. fully solve 2 bonus exercises, or solve 3 bonus exercises to
66% each, or ...
Bonus exercises must be unlocked (→ experience points) by
successfully completing the weekly exercises
It is again not necessary to solve all weekly exercises completely in
order to unlock a bonus exercise
Details: exercise sessions, online exercise system (Code Expert)

8

Academic integrity

Rule: You submit solutions that you have written yourself and that you
have understood.
We check this (partially automatically) and reserve our rights to adopt
disciplinary measures.

9

Should there be any Problems ...

with the course content

definitely attend all recitation sessions
ask questions there
and/or contact the assistant

further problems

Email to lecturer (Felix Friedrich, Hermann Lehner)

We are willing to help.

10

1. Introduction

Objectives of this Course

11

Goals of the course

Understand the design and analysis of fundamental algorithms and
data structures.
Understand how an algorithmic problem is mapped to a su�ciently
e�cient computer program.

12

Contents

data structures / algorithms
The notion invariant, cost model, Landau notation

algorithms design, induction, divide & conquer
searching and sorting

dictionaries: hashing and search trees, balanced trees
dynamic programming

fundamental graph algorithms
Shortest paths, maximum flow

Software Engineering
Java To Python Introduction

Python Datastructures

13

2. From Java to Python

First Python Program, Transfer Java→ Python, Dynamic Data Structures in
Python

14

Learning Objectives

see a new programming language (Python) and learn how to transfer
from one programming language to another
learn the most important di�erences between Java and Python, both
from a syntactical and semantical point of view
learn about the basic data types of Python (list, set, dict, tuple) and
operations leveraging the use of such data types
get used to the new programming language and environment (Python)
by re-implementing known algorithms

15

First Java Program

public class Hello {
public static void main (String[] args) {

System.out.print("Hello World!");
}

}

16

First Python Program

print("Hello World!")

17

Comments

Comments are preceded by a #

prints ’Hello World!’ to the console
print("Hello World!")

18

Formatting Matters: Statements

Whitespace is relevant
Each line represents a statement
So, exactly one Statement per line
Comments start with #

Example program with two statements:
two print-statements
print("Hurray, finally ...")
print("... no Semicolons!")

19

Formatting Matters: Blocks

Blocks must be indented.
All indented statements are part of a block. The block ends as soon as
the indentation ends.
Start of a Block is marked by a colon “:”

in Python
while i > 0:

x = x + 1 / i
i = i - 1

print(x)

// in Java
while (i > 0) {

x = x + 1.0 / i;
i = i - 1;

}
System.out.print(x)

20

Literals: Numbers

integer: 42, -5, 0x1b, 0o33, 7729684762313578932578932
Arbitrary precise integer numbers
float: -0.1, 34.567e-4
Like double in Java, but precision depends on platform (CPU/ operating
system)
complex: 2 + 3j, (0.21 - 1.2j)
Complex numbers in the form a+bj. Optional round parentheses.

21

Literals: Booleans

True
False

22

Literals: Strings

’a single quoted string\nand a second line’
"a doube quoted string\nand a second line"
Multi-line strings (tripple double quotes):

"""a multiline string
and a second line"""

23

Literals: Sequences

arrays: There are no primitive arrays in Python
lists: [17, True, "abc"] , []
Mutable ordered sequence of 0 or more Values of arbitrary types.
tuples: (17, True, "abc") , (42,)
Immutable ordered sequence of 1 or more Values of arbitrary types.

24

Literals: Collections

dicts: { "a": 42, "b": 27, False: 0 } , {}
Mutable Key-Value store. Keys and values may have arbitrary types.
sets: {17, True, "abc"} , {42}
Mutable unordered sequence of 0 or more Values of arbitrary types. No
duplicates.

25

Variables

Variables are automatically created upon the first assignment
The type of a variable is not checked upon assignment. That is, values of
di�erent types can be assigned to a variable over time.
Assignment of values with the assignment operator: =
Assignment to multiple variables with tuples

a = "Ein Text"
print(a) # prints: Ein Text
a = 42
print(a) # prints: 42

x, y = 4, 5
print(x) # prints: 4
print(y) # prints: 5

26

Variables

Variables must always be assigned first before it’s possible to read their
value

Assume b never got a value assigned:
a = b

Results in the following error
NameError: name ’b’ is not defined

27

Numeric and Boolean Operators

Numeric operators as in Java: +, -, *, /, %, **, //
Caution: “ / ” always results in a floating-point number
: Power function, ab = ab.
//: Integer division, 5//2 results in 2.
Comparison operators as in Java: ==, >=, <=, >, <, !=
Logical Operators: and, or, not
Membership Operator: “ in ” Determines if a value is in a list, set or
string.
Identity Operator: “ is ” Checks if two variables point to the same object.

28

Input/Output

Reading of inputs using input()
A prompt can be provided.
Output using print(...)
print accepts one or more arguments and prints them separated with a
space

name = input("What is your name: ")
print("Hello", name)

29

Input/Output

Input is always read as string
To read a number, the input must be converted to a number first
No implicit conversion happens
Explicit conversion using: int(), float(), complex(), list(), ...

i = int(input("Enter a number: "))
print("The", i,"th power of two is", 2**i)

30

Conditions

No parentheses required around the test
elif to test another case
Mind the indentation!

a = int(input("Enter a number: "))
if a == 42:

print("Naturally, the answer")
elif a == 28:

print("A perfect number, good choice")
else:

print(a, "is just some boring number")

31

While-Loops

The well-known Collaz-Folge
a = int(input("Enter a number: "))
while a != 1:

if a % 2 == 0:
a = a // 2

else:
a = a * 3 + 1

print(a, end=’ ’)

32

For-Loops

For-Loops work di�erently than in Java
Iterates over the elements of the given set

some_list = [14, ’lala’, 22, True, 6]
total = 0;
for item in some_list:

if type(item) == int:
total += item

print("Total of the numbers is", total)

33

For-Loops over a value range

The function range(start, end, step) creates a list of values, starting
with start until end - exclusive. Stepsize is step.
Step size is 1 if the third argument is omitted.

the following loop prints "1 2 3 4"
for i in range(1,5):

print(i, end=’ ’)

the following loop prints "10 8 6 4 2"
for i in range(10, 0, -2):

print(i, end=’ ’)

34

Methods
The Cookie Calculator revisited

def readInt(prompt, atleast = 1):
"""Prompt for a number greater 0 (or min, if specified)"""
number = 0;
while number < atleast:

number = int(input(prompt))
if (number < atleast):

print("Too small, pick a number larger than", atleast)
return number

kids = readInt("Kids: ")
cookies = readInt("Cookies: ", atleast=kids)
print("Each Kid gets", cookies // kids, "cookies.")
print("Papa gets", cookies % kids, "cookies.")

35

Lists: Basic Operations

Element-Access (0-based): a[2] points to the third element.
Negative indices count from the last element!

a = [3, 7, 4]
print(a[-1]) # prints ’4’

Add value to the tail: a.append(12)
Test if an element is in a collection:

if 12 in a:
print(’12 is in the list, we just added it before’)

Anzahl Elemente in einer Collection: len(a)

36

Lists: Slicing

Slicing: address partition: a[start:end]
a and/or b are positive or negative indices.
end is not inclusive

a = [1, 2, 3, 4, 5, 6, 7, 8, 9]
print(a[2:4]) # [3, 4]
print(a[3:-3]) # [4, 5, 6]
print(a[-3:-1]) # [7, 8]
print(a[5:]) # [6, 7, 8, 9]
print(a[:3]) # [1, 2, 3]

37

Dictionaries

Dictionaries are very important primitive data structures in Python
Easy and e�cient possibility to name and group several fields of data
Build hierarchical data structures by nesting
Accessing elements using [] Operator

record = { ’Firstname’: ’Hermann’, ’Lastname’:’Lehner’,
’Salary’: 420000, ’Mac User’: True }

record[’Salary’] = 450000
if record[’Mac User’]:

print(’... one more thing!’)

38

Dynamic Data Structures with Dicts

tree = {
’key’: 8,
’left’ : {

’key’: 4, ’left’ : None, ’right’: None
},
’right’: {

’key’: 13,
’left’ : {

’key’: 10, ’left’ : None, ’right’: None
},
’right’: {

’key’: 19, ’left’ : None, ’right’: None
}

}
}

8

4 13

10 19

39

Dynamic Data Structures with Dicts

Working with Dicts (Examples)

l = tree[’left’] # assign left subtree to variable l
l[’key’] = 6 # changes key from 4 to 6

if l[’left’] is None: # proper way to test against None
print("There is no left child here...")

else:
print("Value of left subtree is", l[’left’][’key’]

40

Dynamic Data Structures with Classes

class Node:
def __init__(self, k, l=None, r=None):

self.key, self.left, self.right = k, l, r

create the tree depicted on the right
rightSubtree = Node(13, l=Node(10), r=Node(19))
tree = Node(8, l=Node(4), r=rightSubtree)

an example query
print(tree.right.right.key) # prints: 19

8

4 13

10 19

41

Modules

Python has a vast amount of libraries in form of modules that can be
imported.

Importaing a whole module:

import math
x = math.sqrt(4)

from math import *
x = sqrt(4)

Importaing parts of a module:

from datetime import date
t = date.today()

42

3. Advanced Python Concepts

Built-in Functions, Conditional Expressions, List and Dict Comprehension,
File IO, Exception-Handling

43

Built-In Functions: Enumerate with Indices

Sometimes, one wants to iterate through a list, including the index of each
element. This works with enumerate(...)

data = [’Spam’, ’Eggs’, ’Ham’]

for index, value in enumerate(data):
print(index, ":", value)

Output:
0 : Spam
1 : Eggs
2 : Ham

44

Built-In Functions: Combining lists

There is a simple possibility to combine lists element-wise (like a zipper!):
zip(...)

places = [’Zurich’, ’Basel’, ’Bern’]
plz = [8000, 4000, 3000,]

list(zip(places, plz)
[(’Zurich’, 8000), (’Basel’, 4000), (’Bern’, 3000)]

dict(zip(places, plz)
{’Zurich’: 8000, ’Basel’: 4000, ’Bern’: 3000}

45

Conditional Expressions

In Python, the value of an expression can depend on a condition (as part
of the expression!)

Example: Collaz Sequence
while a != 1:

a = a // 2 if a % 2 == 0 else a * 3 +1

Example: Text formatting
print(’I see’, n, ’mouse’ if n ==1 else ’mice’)

46

List Comprehension

Python provides a convenient way of creating lists declaratively
Similar technique to ‘map’ and ‘filter’ in functional languages

Example: Read-in a sequence of numbers
line = input(’Enter some numbers: ’)
s_list = line.split()
n_list = [int(x) for x in s_list]

The same combined in one expression
n_list = [int(x) for x in input(’Enter some numbers: ’).split()]

47

List Comprehension

Example: Eliminate whitespace in front and at the back
line = [’ some eggs ’, ’ slice of ham ’, ’ a lot of spam ’]
cleaned = [item.strip() for item in line]

cleaned == [’some eggs’, ’slice of ham’, ’a lot of spam’]

48

Dict Comprehension
Like with lists, but with key/value pairs

Example: extract data from a dict
data = {

’Spam’ : { ’Amount’ : 12, ’Price’: 0.45 },
’Eggs’ : { ’Price’: 0.8 },
’Ham’ : { ’Amount’: 5, ’Price’: 1.20 }

}

total_prices = { item : record[’Amount’] * record[’Price’]
for item, record in data.items()
if ’Amount’ in record }

total_prices == {’Spam’: 5.4, ’Ham’: 6.0}

49

File IO

Files can be opened with the command open
To automatically close files afterwards, this must happen in a with block

Example: Read CSV file
import csv

with open(’times.csv’, mode=’r’) as csv_file:
csv_lines = csv.reader(csv_file)
for line in csv_lines:

do something for each record

Writing works similarly. See Python documentation.

50

Exception Handling

Given the following code:

x = int(input(’A number please: ’))

If no number is entered, the program crashes:

Traceback (most recent call last):
File "main.py", line 1, in <module>

x = int(input(’A number please: ’))
ValueError: invalid literal for int() with base 10: ’a’

We can catch this error and react accordingly.

51

Exception Handling

try:
x = int(input(’A number please: ’))

except ValueError:
print(’Oh boy, that was no number...’)
x = 0

print(’x:’, x)

Output, if spam is entered instead of a number:

Oh boy, that was no number...
x: 0

52

4. Algorithmen und Datenstrukturen

Algorithms and Data Structures, Overview
[Cormen et al, Kap. 1; Ottman/Widmayer, Kap. 1.1]

53

Algorithm

Algorithm

Well-defined procedure to compute output data from input data

54

Example Problem: Sorting
Input: A sequence of n numbers (comparable objects) (a1, a2, . . . , an)

Output: Permutation (a′1, a′2, . . . , a′n) of the sequence (ai)1≤i≤n, such that
a′1 ≤ a′2 ≤ · · · ≤ a′n

Possible input

(1, 7, 3), (15, 13, 12,−0.5), (999, 998, 997, 996, . . . , 2, 1), (1), () . . .

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the problem
instance. Often there are “good” and “bad” instances.

Therefore we consider algorithms sometimes ”in the average“ and most
often in the ”worst case“.

55

Example Problem: Sorting
Input: A sequence of n numbers (comparable objects) (a1, a2, . . . , an)
Output: Permutation (a′1, a′2, . . . , a′n) of the sequence (ai)1≤i≤n, such that

a′1 ≤ a′2 ≤ · · · ≤ a′n

Possible input

(1, 7, 3), (15, 13, 12,−0.5), (999, 998, 997, 996, . . . , 2, 1), (1), () . . .

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the problem
instance. Often there are “good” and “bad” instances.

Therefore we consider algorithms sometimes ”in the average“ and most
often in the ”worst case“.

55

Example Problem: Sorting
Input: A sequence of n numbers (comparable objects) (a1, a2, . . . , an)
Output: Permutation (a′1, a′2, . . . , a′n) of the sequence (ai)1≤i≤n, such that

a′1 ≤ a′2 ≤ · · · ≤ a′n

Possible input

(1, 7, 3), (15, 13, 12,−0.5), (999, 998, 997, 996, . . . , 2, 1), (1), () . . .

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the problem
instance. Often there are “good” and “bad” instances.

Therefore we consider algorithms sometimes ”in the average“ and most
often in the ”worst case“.

55

Example Problem: Sorting
Input: A sequence of n numbers (comparable objects) (a1, a2, . . . , an)
Output: Permutation (a′1, a′2, . . . , a′n) of the sequence (ai)1≤i≤n, such that

a′1 ≤ a′2 ≤ · · · ≤ a′n

Possible input

(1, 7, 3), (15, 13, 12,−0.5), (999, 998, 997, 996, . . . , 2, 1), (1), () . . .

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the problem
instance. Often there are “good” and “bad” instances.

Therefore we consider algorithms sometimes ”in the average“ and most
often in the ”worst case“.

55

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching

routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
evaluation order: Topological Sorting
autocomletion and spell-checking: Dictionaries / Trees
Fast Lookup : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum Spanning
Tree, Simulated Annealing

56

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure

DNA matching: Dynamic Programming
evaluation order: Topological Sorting
autocomletion and spell-checking: Dictionaries / Trees
Fast Lookup : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum Spanning
Tree, Simulated Annealing

56

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming

evaluation order: Topological Sorting
autocomletion and spell-checking: Dictionaries / Trees
Fast Lookup : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum Spanning
Tree, Simulated Annealing

56

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
evaluation order: Topological Sorting

autocomletion and spell-checking: Dictionaries / Trees
Fast Lookup : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum Spanning
Tree, Simulated Annealing

56

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
evaluation order: Topological Sorting
autocomletion and spell-checking: Dictionaries / Trees

Fast Lookup : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum Spanning
Tree, Simulated Annealing

56

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
evaluation order: Topological Sorting
autocomletion and spell-checking: Dictionaries / Trees
Fast Lookup : Hash-Tables

The travelling Salesman: Dynamic Programming, Minimum Spanning
Tree, Simulated Annealing

56

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
evaluation order: Topological Sorting
autocomletion and spell-checking: Dictionaries / Trees
Fast Lookup : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum Spanning
Tree, Simulated Annealing

56

Characteristics

Extremely large number of potential solutions
Practical applicability

57

Data Structures

A data structure is a particular way of
organizing data in a computer so that
they can be used e�ciently (in the
algorithms operating on them).
Programs = algorithms + data structures.

58

E�ciency

If computers were infinitely fast and had an infinite amount of memory ...
... then we would still need the theory of algorithms (only) for
statements about correctness (and termination).

Reality: resources are bounded and not free:
Computing time→ E�ciency
Storage space→ E�ciency

Actually, this course is nearly only about e�ciency.

59

E�ciency

If computers were infinitely fast and had an infinite amount of memory ...
... then we would still need the theory of algorithms (only) for
statements about correctness (and termination).

Reality: resources are bounded and not free:
Computing time→ E�ciency
Storage space→ E�ciency

Actually, this course is nearly only about e�ciency.

59

Hard problems.

NP-complete problems: no known e�cient solution (the existence of
such a solution is very improbable – but it has not yet been proven that
there is none!)
Example: travelling salesman problem

This course is mostly about problems that can be solved e�ciently (in
polynomial time).

60

5. E�ciency of algorithms

E�ciency of Algorithms, Random Access Machine Model, Function Growth,
Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 | Ottman/Widmayer, Kap. 1.1]

61

E�ciency of Algorithms

Goals
Quantify the runtime behavior of an algorithm independent of the
machine.
Compare e�ciency of algorithms.
Understand dependece on the input size.

62

Programs and Algorithms

program

programming language

computer

algorithm

pseudo-code

computation model

implemented in

specified for

specified in

based on

Technology Abstraction

63

Technology Model

Random Access Machine (RAM) Model

Execution model: instructions are executed one after the other (on
one processor core).

Memory model: constant access time (big array)
Fundamental operations: computations (+,−,·,...) comparisons,
assignment / copy on machine words (registers), flow control
(jumps)
Unit cost model: fundamental operations provide a cost of 1.
Data types: fundamental types like size-limited integer or floating
point number.

64

Technology Model

Random Access Machine (RAM) Model

Execution model: instructions are executed one after the other (on
one processor core).
Memory model: constant access time (big array)

Fundamental operations: computations (+,−,·,...) comparisons,
assignment / copy on machine words (registers), flow control
(jumps)
Unit cost model: fundamental operations provide a cost of 1.
Data types: fundamental types like size-limited integer or floating
point number.

64

Technology Model

Random Access Machine (RAM) Model

Execution model: instructions are executed one after the other (on
one processor core).
Memory model: constant access time (big array)
Fundamental operations: computations (+,−,·,...) comparisons,
assignment / copy on machine words (registers), flow control
(jumps)

Unit cost model: fundamental operations provide a cost of 1.
Data types: fundamental types like size-limited integer or floating
point number.

64

Technology Model

Random Access Machine (RAM) Model

Execution model: instructions are executed one after the other (on
one processor core).
Memory model: constant access time (big array)
Fundamental operations: computations (+,−,·,...) comparisons,
assignment / copy on machine words (registers), flow control
(jumps)
Unit cost model: fundamental operations provide a cost of 1.

Data types: fundamental types like size-limited integer or floating
point number.

64

Technology Model

Random Access Machine (RAM) Model

Execution model: instructions are executed one after the other (on
one processor core).
Memory model: constant access time (big array)
Fundamental operations: computations (+,−,·,...) comparisons,
assignment / copy on machine words (registers), flow control
(jumps)
Unit cost model: fundamental operations provide a cost of 1.
Data types: fundamental types like size-limited integer or floating
point number.

64

For Dynamic Data Strcutures

Pointer Machine Model
Objects bounded in size can be dynamically allocated in constant
time
Fields (with word-size) of the objects can be accessed in constant
time 1.

top xn xn−1 x1 null

65

Asymptotic behavior

An exact running time of an algorithm can normally not be predicted even
for small input data.

We consider the asymptotic behavior of the algorithm.
And ignore all constant factors.

An operation with cost 20 is no worse than one with cost 1
Linear growth with gradient 5 is as good as linear growth with gradient
1.

66

5.2 Function growth

O, Θ, Ω [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]

68

Superficially

Use the asymptotic notation to specify the execution time of algorithms.
We write Θ(n2) and mean that the algorithm behaves for large n like n2:
when the problem size is doubled, the execution time multiplies by four.

69

More precise: asymptotic upper bound

provided: a function g : N→ R.
Definition:1

O(g) = {f : N→ R|
∃ c > 0,∃n0 ∈ N :
∀ n ≥ n0 : 0 ≤ f(n) ≤ c · g(n)}

Notation:
O(g(n)) := O(g(·)) = O(g).

1Ausgesprochen: Set of all functions f : N→ R that satisfy: there is some (real
valued) c > 0 and some n0 ∈ N such that 0 ≤ f(n) ≤ n · g(n) for all n ≥ n0.

70

Graphic

g(n) = n2

f ∈ O(g)

n0 n

71

Graphic

g(n) = n2

f ∈ O(g)

h ∈ O(g)

n0

n

71

Converse: asymptotic lower bound

Given: a function g : N→ R.
Definition:

Ω(g) = {f : N→ R|
∃ c > 0,∃n0 ∈ N :
∀ n ≥ n0 : 0 ≤ c · g(n) ≤ f(n)}

72

Example

g(n) = n

f ∈ Ω(g)

n0 n

73

Example

g(n) = n

f ∈ Ω(g)h ∈ Ω(g)

n0 n

73

Asymptotic tight bound

Given: function g : N→ R.
Definition:

Θ(g) := Ω(g) ∩ O(g).

Simple, closed form: exercise.

74

Example

g(n) = n2

f ∈ Θ(n2)

h(n) = 0.5 · n2

n

75

Notions of Growth

O(1) bounded array access
O(log logn) double logarithmic interpolated binary sorted sort
O(logn) logarithmic binary sorted search
O(
√
n) like the square root naive prime number test

O(n) linear unsorted naive search
O(n logn) superlinear / loglinear good sorting algorithms
O(n2) quadratic simple sort algorithms
O(nc) polynomial matrix multiply
O(2n) exponential Travelling Salesman Dynamic Programming
O(n!) factorial Travelling Salesman naively

76

Small n

2 3 4 5 6

20

40

60

lnn
n

n2

n4 2n

77

Larger n

5 10 15 20

0.2

0.4

0.6

0.8

1
·106

logn
n
n2

n4

2n

78

“Large” n

20 40 60 80 100

0.2

0.4

0.6

0.8

1
·1020

logn
n
n2n4

2n

79

Logarithms

10 20 30 40 50

200

400

600

800

1,000

n

n2

n3/2

logn

n logn

80

Time Consumption

Assumption 1 Operation = 1µs.

problem size 1 100 10000 106 109

log2 n 1µs

7µs 13µs 20µs 30µs

n 1µs

100µs 1/100s 1s 17 minutes

n log2 n 1µs

700µs 13/100µs 20s 8.5 hours

n2 1µs

1/100s 1.7 minutes 11.5 days 317 centuries

2n 1µs

1014 centuries ≈ ∞ ≈ ∞ ≈ ∞

81

Time Consumption

Assumption 1 Operation = 1µs.

problem size 1 100 10000 106 109

log2 n 1µs

7µs 13µs 20µs 30µs

n 1µs 100µs 1/100s 1s 17 minutes

n log2 n 1µs

700µs 13/100µs 20s 8.5 hours

n2 1µs

1/100s 1.7 minutes 11.5 days 317 centuries

2n 1µs

1014 centuries ≈ ∞ ≈ ∞ ≈ ∞

81

Time Consumption

Assumption 1 Operation = 1µs.

problem size 1 100 10000 106 109

log2 n 1µs

7µs 13µs 20µs 30µs

n 1µs 100µs 1/100s 1s 17 minutes

n log2 n 1µs

700µs 13/100µs 20s 8.5 hours

n2 1µs 1/100s 1.7 minutes 11.5 days 317 centuries

2n 1µs

1014 centuries ≈ ∞ ≈ ∞ ≈ ∞

81

Time Consumption

Assumption 1 Operation = 1µs.

problem size 1 100 10000 106 109

log2 n 1µs 7µs 13µs 20µs 30µs

n 1µs 100µs 1/100s 1s 17 minutes

n log2 n 1µs

700µs 13/100µs 20s 8.5 hours

n2 1µs 1/100s 1.7 minutes 11.5 days 317 centuries

2n 1µs

1014 centuries ≈ ∞ ≈ ∞ ≈ ∞

81

Time Consumption

Assumption 1 Operation = 1µs.

problem size 1 100 10000 106 109

log2 n 1µs 7µs 13µs 20µs 30µs

n 1µs 100µs 1/100s 1s 17 minutes

n log2 n 1µs 700µs 13/100µs 20s 8.5 hours

n2 1µs 1/100s 1.7 minutes 11.5 days 317 centuries

2n 1µs

1014 centuries ≈ ∞ ≈ ∞ ≈ ∞

81

Time Consumption

Assumption 1 Operation = 1µs.

problem size 1 100 10000 106 109

log2 n 1µs 7µs 13µs 20µs 30µs

n 1µs 100µs 1/100s 1s 17 minutes

n log2 n 1µs 700µs 13/100µs 20s 8.5 hours

n2 1µs 1/100s 1.7 minutes 11.5 days 317 centuries

2n 1µs 1014 centuries ≈ ∞ ≈ ∞ ≈ ∞

81

About the Notation

Common casual notation
f = O(g)

should be read as f ∈ O(g).
Clearly it holds that

f1 = O(g), f2 = O(g) 6⇒ f1 = f2!

n = O(n2), n2 = O(n2) but naturally n 6= n2.

We avoid this notation where it could lead to ambiguities.

83

Reminder: Java Collections / Maps

Collection

Queue List Set

SortedSet

Map

SortedMap

PriorityQueue

LinkedList

ArrayList

TreeSet LinkedHashSet

HashSet

TreeMap

LinkedHashMap

HashMap

interface

Klasse

84

ArrayList versus LinkedList

run time measurements for 10000 operations (on [code] expert)

ArrayList LinkedList
469µs 1787µs

37900µs 761µs
1840µs 2050µs
426µs 110600µs
31ms 301ms
38ms 141ms

228ms 1080ms
648µs 757µs

58075µs 609µs

85

Reminder: Decision

Order?

TreeMap

sorted

LinkedHashMap

ordererd

important

HashMap

not important

key-value

pairs

duplicates?

ArrayList

ran
dom

acc
ess

LinkedList

no
ra

nd
om

ac
ce

ss
PriorityQueue

by
priority

yes

Order?

TreeSet

sorted

LinkedHashSet

ordererd

important

HashSet

not important

no

Values

86

Asymptotic Runtimes (Java)

With our new language (Ω,O,Θ), we can now state the behavior of the
data structures and their algorithms more precisely
Asymptotic running times (Anticipation!)

Data structure Random
Access

Insert Next Insert
After
Element

Search

ArrayList Θ(1) Θ(1)A Θ(1) Θ(n) Θ(n)
LinkedList Θ(n) Θ(1) Θ(1) Θ(1) Θ(n)
TreeSet – Θ(logn) Θ(logn) – Θ(logn)
HashSet – Θ(1)P – – Θ(1)P
A = amortized, P=expected, otherwise worst case

87

Asymptotic Runtimes (Python)

Asymptotic running times
Data structure Random

Access
Insert Iteration Insert

After
Element

Search
x in S

list Θ(1) Θ(1)A Θ(n) Θ(n) Θ(n)
set – Θ(1)P Θ(n) – Θ(1)P
dict – Θ(1)P Θ(n) – Θ(1)P
A = amortized, P=expected, otherwise worst case

88

6. Searching

Linear Search, Binary Search [Ottman/Widmayer, Kap. 3.2, Cormen et al,
Kap. 2: Problems 2.1-3,2.2-3,2.3-5]

89

The Search Problem

Provided
A set of data sets

telephone book, dictionary, symbol table

Each dataset has a key k.
Keys are comparable: unique answer to the question k1 ≤ k2 for keys k1,
k2.

Task: find data set by key k.

90

Search in Array

Provided
Array A with n elements (A[1], . . . , A[n]).
Key b

Wanted: index k, 1 ≤ k ≤ n with A[k] = b or ”not found”.

10

4

20

2

22

1

24

6

28

9

32

3

35

5

38

8

41

10

42

7

91

Linear Search

Traverse the array from A[1] to A[n].

Best case: 1 comparison.
Worst case: n comparisons.

92

Linear Search

Traverse the array from A[1] to A[n].
Best case: 1 comparison.

Worst case: n comparisons.

92

Linear Search

Traverse the array from A[1] to A[n].
Best case: 1 comparison.
Worst case: n comparisons.

92

Search in a Sorted Array

Provided
Sorted array A with n elements (A[1], . . . , A[n]) with
A[1] ≤ A[2] ≤ · · · ≤ A[n].
Key b

Wanted: index k, 1 ≤ k ≤ n with A[k] = b or ”not found”.

10

1

20

2

22

3

24

4

28

5

32

6

35

7

38

8

41

9

42

10

93

divide et impera

Divide and Conquer

Divide the problem into subproblems that contribute to the simplified
computation of the overal problem.

94

divide et impera

Solution

S2

S22

S21

S1

S12

S11

Problem P

P1

P11

P12

P2

P21

P22

94

Divide and Conquer!
Search b = 23.

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b < 28

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b > 20

22
3

24
4

28
5

10
1

20
2

32
6

35
7

38
8

41
9

42
10

b > 22

24
4

10
1

20
2

22
3

28
5

32
6

35
7

38
8

41
9

42
10

b < 24

24
4

10
1

22
3

20
2

28
5

32
6

35
7

38
8

41
9

42
10

erfolglos

95

Divide and Conquer!
Search b = 23.

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b < 28

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b > 20

22
3

24
4

28
5

10
1

20
2

32
6

35
7

38
8

41
9

42
10

b > 22

24
4

10
1

20
2

22
3

28
5

32
6

35
7

38
8

41
9

42
10

b < 24

24
4

10
1

22
3

20
2

28
5

32
6

35
7

38
8

41
9

42
10

erfolglos

95

Divide and Conquer!
Search b = 23.

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b < 28

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b > 20

22
3

24
4

28
5

10
1

20
2

32
6

35
7

38
8

41
9

42
10

b > 22

24
4

10
1

20
2

22
3

28
5

32
6

35
7

38
8

41
9

42
10

b < 24

24
4

10
1

22
3

20
2

28
5

32
6

35
7

38
8

41
9

42
10

erfolglos

95

Divide and Conquer!
Search b = 23.

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b < 28

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b > 20

22
3

24
4

28
5

10
1

20
2

32
6

35
7

38
8

41
9

42
10

b > 22

24
4

10
1

20
2

22
3

28
5

32
6

35
7

38
8

41
9

42
10

b < 24

24
4

10
1

22
3

20
2

28
5

32
6

35
7

38
8

41
9

42
10

erfolglos

95

Divide and Conquer!
Search b = 23.

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b < 28

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b > 20

22
3

24
4

28
5

10
1

20
2

32
6

35
7

38
8

41
9

42
10

b > 22

24
4

10
1

20
2

22
3

28
5

32
6

35
7

38
8

41
9

42
10

b < 24

24
4

10
1

22
3

20
2

28
5

32
6

35
7

38
8

41
9

42
10

erfolglos

95

Divide and Conquer!
Search b = 23.

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b < 28

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b > 20

22
3

24
4

28
5

10
1

20
2

32
6

35
7

38
8

41
9

42
10

b > 22

24
4

10
1

20
2

22
3

28
5

32
6

35
7

38
8

41
9

42
10

b < 24

24
4

10
1

22
3

20
2

28
5

32
6

35
7

38
8

41
9

42
10

erfolglos

95

Divide and Conquer!
Search b = 23.

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b < 28

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b > 20

22
3

24
4

28
5

10
1

20
2

32
6

35
7

38
8

41
9

42
10

b > 22

24
4

10
1

20
2

22
3

28
5

32
6

35
7

38
8

41
9

42
10

b < 24

24
4

10
1

22
3

20
2

28
5

32
6

35
7

38
8

41
9

42
10

erfolglos

95

Binary Search Algorithm BSearch(A, l, r, b)

Input: Sorted array A of n keys. Key b. Bounds 1 ≤ l, r ≤ n mit l ≤ r or
l = r + 1.

Output: Index m ∈ [l, . . . , r + 1], such that A[i] ≤ b for all l ≤ i < m and
A[i] ≥ b for all m < i ≤ r.

m← b(l + r)/2c
if l > r then // Unsuccessful search

return l
else if b = A[m] then// found

return m
else if b < A[m] then// element to the left

return BSearch(A, l,m− 1, b)
else // b > A[m]: element to the right

return BSearch(A,m+ 1, r, b)

96

Analysis (worst case)
Recurrence (n = 2k)

T (n) =

d falls n = 1,
T (n/2) + c falls n > 1.

Compute: 2

T (n) = T

(
n

2

)
+ c

= T

(
n

4

)
+ 2c = ...

= T

(
n

2i
)

+ i · c

= T

(
n

n

)
+ log2 n · c = d+ c · log2 n ∈ Θ(logn)

2Try to find a closed form of T by applying the recurrence repeatedly (starting with
T (n)).

97

Analysis (worst case)
Recurrence (n = 2k)

T (n) =

d falls n = 1,
T (n/2) + c falls n > 1.

Compute: 2

T (n) = T

(
n

2

)
+ c = T

(
n

4

)
+ 2c

= ...

= T

(
n

2i
)

+ i · c

= T

(
n

n

)
+ log2 n · c = d+ c · log2 n ∈ Θ(logn)

2Try to find a closed form of T by applying the recurrence repeatedly (starting with
T (n)).

97

Analysis (worst case)
Recurrence (n = 2k)

T (n) =

d falls n = 1,
T (n/2) + c falls n > 1.

Compute: 2

T (n) = T

(
n

2

)
+ c = T

(
n

4

)
+ 2c = ...

= T

(
n

2i
)

+ i · c

= T

(
n

n

)
+ log2 n · c = d+ c · log2 n ∈ Θ(logn)

2Try to find a closed form of T by applying the recurrence repeatedly (starting with
T (n)).

97

Analysis (worst case)
Recurrence (n = 2k)

T (n) =

d falls n = 1,
T (n/2) + c falls n > 1.

Compute: 2

T (n) = T

(
n

2

)
+ c = T

(
n

4

)
+ 2c = ...

= T

(
n

2i
)

+ i · c

= T

(
n

n

)
+ log2 n · c = d+ c · log2 n ∈ Θ(logn)

2Try to find a closed form of T by applying the recurrence repeatedly (starting with
T (n)).

97

Result

Theorem 3
The binary sorted search algorithm requires Θ(log n) fundamental oper-
ations.

98

7. Sorting

Simple Sorting, Quicksort, Mergesort

100

Problem

Input: An array A = (A[1], ..., A[n]) with length n.
Output: a permutation A′ of A, that is sorted: A′[i] ≤ A′[j] for all
1 ≤ i ≤ j ≤ n.

101

Selection Sort

5 6 2 8 4 1 (i = 1)

1 6 2 8 4 5 (i = 2)

1 2 6 8 4 5 (i = 3)

1 2 4 8 6 5 (i = 4)

1 2 4 5 6 8 (i = 5)

1 2 4 5 6 8 (i = 6)

1 2 4 5 6 8

Selection of the smallest
element by search in the
unsorted part A[i..n] of
the array.

Swap the smallest
element with the first
element of the unsorted
part.

Unsorted part decreases
in size by one element
(i→ i+ 1). Repeat until
all is sorted. (i = n)

102

Selection Sort

5 6 2 8 4 1 (i = 1)

1 6 2 8 4 5 (i = 2)

1 2 6 8 4 5 (i = 3)

1 2 4 8 6 5 (i = 4)

1 2 4 5 6 8 (i = 5)

1 2 4 5 6 8 (i = 6)

1 2 4 5 6 8

Selection of the smallest
element by search in the
unsorted part A[i..n] of
the array.

Swap the smallest
element with the first
element of the unsorted
part.

Unsorted part decreases
in size by one element
(i→ i+ 1). Repeat until
all is sorted. (i = n)

102

Selection Sort

5 6 2 8 4 1 (i = 1)

1 6 2 8 4 5 (i = 2)

1 2 6 8 4 5 (i = 3)

1 2 4 8 6 5 (i = 4)

1 2 4 5 6 8 (i = 5)

1 2 4 5 6 8 (i = 6)

1 2 4 5 6 8

Selection of the smallest
element by search in the
unsorted part A[i..n] of
the array.

Swap the smallest
element with the first
element of the unsorted
part.

Unsorted part decreases
in size by one element
(i→ i+ 1). Repeat until
all is sorted. (i = n)

102

Selection Sort

5 6 2 8 4 1 (i = 1)

1 6 2 8 4 5 (i = 2)

1 2 6 8 4 5 (i = 3)

1 2 4 8 6 5 (i = 4)

1 2 4 5 6 8 (i = 5)

1 2 4 5 6 8 (i = 6)

1 2 4 5 6 8

Selection of the smallest
element by search in the
unsorted part A[i..n] of
the array.

Swap the smallest
element with the first
element of the unsorted
part.

Unsorted part decreases
in size by one element
(i→ i+ 1). Repeat until
all is sorted. (i = n)

102

Selection Sort

5 6 2 8 4 1 (i = 1)

1 6 2 8 4 5 (i = 2)

1 2 6 8 4 5 (i = 3)

1 2 4 8 6 5 (i = 4)

1 2 4 5 6 8 (i = 5)

1 2 4 5 6 8 (i = 6)

1 2 4 5 6 8

Selection of the smallest
element by search in the
unsorted part A[i..n] of
the array.

Swap the smallest
element with the first
element of the unsorted
part.

Unsorted part decreases
in size by one element
(i→ i+ 1). Repeat until
all is sorted. (i = n)

102

Selection Sort

5 6 2 8 4 1 (i = 1)

1 6 2 8 4 5 (i = 2)

1 2 6 8 4 5 (i = 3)

1 2 4 8 6 5 (i = 4)

1 2 4 5 6 8 (i = 5)

1 2 4 5 6 8 (i = 6)

1 2 4 5 6 8

Selection of the smallest
element by search in the
unsorted part A[i..n] of
the array.

Swap the smallest
element with the first
element of the unsorted
part.

Unsorted part decreases
in size by one element
(i→ i+ 1). Repeat until
all is sorted. (i = n)

102

Selection Sort

5 6 2 8 4 1 (i = 1)

1 6 2 8 4 5 (i = 2)

1 2 6 8 4 5 (i = 3)

1 2 4 8 6 5 (i = 4)

1 2 4 5 6 8 (i = 5)

1 2 4 5 6 8 (i = 6)

1 2 4 5 6 8

Selection of the smallest
element by search in the
unsorted part A[i..n] of
the array.

Swap the smallest
element with the first
element of the unsorted
part.

Unsorted part decreases
in size by one element
(i→ i+ 1). Repeat until
all is sorted. (i = n)

102

Selection Sort

5 6 2 8 4 1 (i = 1)

1 6 2 8 4 5 (i = 2)

1 2 6 8 4 5 (i = 3)

1 2 4 8 6 5 (i = 4)

1 2 4 5 6 8 (i = 5)

1 2 4 5 6 8 (i = 6)

1 2 4 5 6 8

Selection of the smallest
element by search in the
unsorted part A[i..n] of
the array.

Swap the smallest
element with the first
element of the unsorted
part.

Unsorted part decreases
in size by one element
(i→ i+ 1). Repeat until
all is sorted. (i = n)

102

Selection Sort

5 6 2 8 4 1 (i = 1)

1 6 2 8 4 5 (i = 2)

1 2 6 8 4 5 (i = 3)

1 2 4 8 6 5 (i = 4)

1 2 4 5 6 8 (i = 5)

1 2 4 5 6 8 (i = 6)

1 2 4 5 6 8

Selection of the smallest
element by search in the
unsorted part A[i..n] of
the array.

Swap the smallest
element with the first
element of the unsorted
part.

Unsorted part decreases
in size by one element
(i→ i+ 1). Repeat until
all is sorted. (i = n)

102

Selection Sort

5 6 2 8 4 1 (i = 1)

1 6 2 8 4 5 (i = 2)

1 2 6 8 4 5 (i = 3)

1 2 4 8 6 5 (i = 4)

1 2 4 5 6 8 (i = 5)

1 2 4 5 6 8 (i = 6)

1 2 4 5 6 8

Selection of the smallest
element by search in the
unsorted part A[i..n] of
the array.

Swap the smallest
element with the first
element of the unsorted
part.

Unsorted part decreases
in size by one element
(i→ i+ 1). Repeat until
all is sorted. (i = n)

102

Selection Sort

5 6 2 8 4 1 (i = 1)

1 6 2 8 4 5 (i = 2)

1 2 6 8 4 5 (i = 3)

1 2 4 8 6 5 (i = 4)

1 2 4 5 6 8 (i = 5)

1 2 4 5 6 8 (i = 6)

1 2 4 5 6 8

Selection of the smallest
element by search in the
unsorted part A[i..n] of
the array.

Swap the smallest
element with the first
element of the unsorted
part.

Unsorted part decreases
in size by one element
(i→ i+ 1). Repeat until
all is sorted. (i = n)

102

Selection Sort

5 6 2 8 4 1 (i = 1)

1 6 2 8 4 5 (i = 2)

1 2 6 8 4 5 (i = 3)

1 2 4 8 6 5 (i = 4)

1 2 4 5 6 8 (i = 5)

1 2 4 5 6 8 (i = 6)

1 2 4 5 6 8

Selection of the smallest
element by search in the
unsorted part A[i..n] of
the array.

Swap the smallest
element with the first
element of the unsorted
part.

Unsorted part decreases
in size by one element
(i→ i+ 1). Repeat until
all is sorted. (i = n)

102

Selection Sort

5 6 2 8 4 1 (i = 1)

1 6 2 8 4 5 (i = 2)

1 2 6 8 4 5 (i = 3)

1 2 4 8 6 5 (i = 4)

1 2 4 5 6 8 (i = 5)

1 2 4 5 6 8 (i = 6)

1 2 4 5 6 8

Selection of the smallest
element by search in the
unsorted part A[i..n] of
the array.

Swap the smallest
element with the first
element of the unsorted
part.

Unsorted part decreases
in size by one element
(i→ i+ 1). Repeat until
all is sorted. (i = n)

102

Algorithm: Selection Sort

Input: Array A = (A[1], . . . , A[n]), n ≥ 0.
Output: Sorted Array A
for i← 1 to n− 1 do

p← i
for j ← i+ 1 to n do

if A[j] < A[p] then
p← j;

swap(A[i], A[p])

103

Analysis

Number comparisons in worst case:

Θ(n2).
Number swaps in the worst case: n− 1 = Θ(n)

104

Analysis

Number comparisons in worst case: Θ(n2).
Number swaps in the worst case:

n− 1 = Θ(n)

104

Analysis

Number comparisons in worst case: Θ(n2).
Number swaps in the worst case: n− 1 = Θ(n)

104

Insertion Sort

5 6 2 8 4 1 (i = 1)

5 6 2 8 4 1 (i = 2)

5 6 2 8 4 1 (i = 3)

2 5 6 8 4 1 (i = 4)

2 5 6 8 4 1 (i = 5)

2 4 5 6 8 1 (i = 6)

1 2 4 5 6 8

Iterative procedure:
i = 1...n
Determine insertion
position for element i.
Insert element i

array
block movement
potentially required

105

Insertion Sort

5 6 2 8 4 1 (i = 1)

5 6 2 8 4 1 (i = 2)

5 6 2 8 4 1 (i = 3)

2 5 6 8 4 1 (i = 4)

2 5 6 8 4 1 (i = 5)

2 4 5 6 8 1 (i = 6)

1 2 4 5 6 8

Iterative procedure:
i = 1...n

Determine insertion
position for element i.
Insert element i

array
block movement
potentially required

105

Insertion Sort

5 6 2 8 4 1 (i = 1)

5 6 2 8 4 1 (i = 2)

5 6 2 8 4 1 (i = 3)

2 5 6 8 4 1 (i = 4)

2 5 6 8 4 1 (i = 5)

2 4 5 6 8 1 (i = 6)

1 2 4 5 6 8

Iterative procedure:
i = 1...n
Determine insertion
position for element i.

Insert element i

array
block movement
potentially required

105

Insertion Sort

5 6 2 8 4 1 (i = 1)

5 6 2 8 4 1 (i = 2)

5 6 2 8 4 1 (i = 3)

2 5 6 8 4 1 (i = 4)

2 5 6 8 4 1 (i = 5)

2 4 5 6 8 1 (i = 6)

1 2 4 5 6 8

Iterative procedure:
i = 1...n
Determine insertion
position for element i.
Insert element i

array
block movement
potentially required

105

Insertion Sort

5 6 2 8 4 1 (i = 1)

5 6 2 8 4 1 (i = 2)

5 6 2 8 4 1 (i = 3)

2 5 6 8 4 1 (i = 4)

2 5 6 8 4 1 (i = 5)

2 4 5 6 8 1 (i = 6)

1 2 4 5 6 8

Iterative procedure:
i = 1...n
Determine insertion
position for element i.
Insert element i

array
block movement
potentially required

105

Insertion Sort

5 6 2 8 4 1 (i = 1)

5 6 2 8 4 1 (i = 2)

5 6 2 8 4 1 (i = 3)

2 5 6 8 4 1 (i = 4)

2 5 6 8 4 1 (i = 5)

2 4 5 6 8 1 (i = 6)

1 2 4 5 6 8

Iterative procedure:
i = 1...n
Determine insertion
position for element i.
Insert element i

array
block movement
potentially required

105

Insertion Sort

5 6 2 8 4 1 (i = 1)

5 6 2 8 4 1 (i = 2)

5 6 2 8 4 1 (i = 3)

2 5 6 8 4 1 (i = 4)

2 5 6 8 4 1 (i = 5)

2 4 5 6 8 1 (i = 6)

1 2 4 5 6 8

Iterative procedure:
i = 1...n
Determine insertion
position for element i.
Insert element i array
block movement
potentially required

105

Insertion Sort

5 6 2 8 4 1 (i = 1)

5 6 2 8 4 1 (i = 2)

5 6 2 8 4 1 (i = 3)

2 5 6 8 4 1 (i = 4)

2 5 6 8 4 1 (i = 5)

2 4 5 6 8 1 (i = 6)

1 2 4 5 6 8

Iterative procedure:
i = 1...n
Determine insertion
position for element i.
Insert element i array
block movement
potentially required

105

Insertion Sort

5 6 2 8 4 1 (i = 1)

5 6 2 8 4 1 (i = 2)

5 6 2 8 4 1 (i = 3)

2 5 6 8 4 1 (i = 4)

2 5 6 8 4 1 (i = 5)

2 4 5 6 8 1 (i = 6)

1 2 4 5 6 8

Iterative procedure:
i = 1...n
Determine insertion
position for element i.
Insert element i array
block movement
potentially required

105

Insertion Sort

5 6 2 8 4 1 (i = 1)

5 6 2 8 4 1 (i = 2)

5 6 2 8 4 1 (i = 3)

2 5 6 8 4 1 (i = 4)

2 5 6 8 4 1 (i = 5)

2 4 5 6 8 1 (i = 6)

1 2 4 5 6 8

Iterative procedure:
i = 1...n
Determine insertion
position for element i.
Insert element i array
block movement
potentially required

105

Insertion Sort

5 6 2 8 4 1 (i = 1)

5 6 2 8 4 1 (i = 2)

5 6 2 8 4 1 (i = 3)

2 5 6 8 4 1 (i = 4)

2 5 6 8 4 1 (i = 5)

2 4 5 6 8 1 (i = 6)

1 2 4 5 6 8

Iterative procedure:
i = 1...n
Determine insertion
position for element i.
Insert element i array
block movement
potentially required

105

Insertion Sort

5 6 2 8 4 1 (i = 1)

5 6 2 8 4 1 (i = 2)

5 6 2 8 4 1 (i = 3)

2 5 6 8 4 1 (i = 4)

2 5 6 8 4 1 (i = 5)

2 4 5 6 8 1 (i = 6)

1 2 4 5 6 8

Iterative procedure:
i = 1...n
Determine insertion
position for element i.
Insert element i array
block movement
potentially required

105

Insertion Sort

5 6 2 8 4 1 (i = 1)

5 6 2 8 4 1 (i = 2)

5 6 2 8 4 1 (i = 3)

2 5 6 8 4 1 (i = 4)

2 5 6 8 4 1 (i = 5)

2 4 5 6 8 1 (i = 6)

1 2 4 5 6 8

Iterative procedure:
i = 1...n
Determine insertion
position for element i.
Insert element i array
block movement
potentially required

105

Insertion Sort

What is the disadvantage of this algorithm compared to sorting by se-
lection?

Many element movements in the worst case.

What is the advantage of this algorithm compared to selection sort?

The search domain (insertion interval) is already sorted. Consequently:
binary search possible.

106

Insertion Sort

What is the disadvantage of this algorithm compared to sorting by se-
lection?
Many element movements in the worst case.

What is the advantage of this algorithm compared to selection sort?

The search domain (insertion interval) is already sorted. Consequently:
binary search possible.

106

Insertion Sort

What is the disadvantage of this algorithm compared to sorting by se-
lection?
Many element movements in the worst case.

What is the advantage of this algorithm compared to selection sort?

The search domain (insertion interval) is already sorted. Consequently:
binary search possible.

106

Algorithm: Insertion Sort

Input: Array A = (A[1], . . . , A[n]), n ≥ 0.
Output: Sorted Array A
for i← 2 to n do

x← A[i]
p← BinarySearch(A, 1, i− 1, x); // Smallest p ∈ [1, i] with A[p] ≥ x
for j ← i− 1 downto p do

A[j + 1]← A[j]
A[p]← x

107

7.1 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

108

Mergesort

Divide and Conquer!
Assumption: two halves of the array A are already sorted.
Minimum of A can be evaluated with two comparisons.
Iteratively: merge the two presorted halves of A in O(n).

109

Merge

1 4 7 9 16 2 3 10 11 12

1 2 3 4 7 9 10 11 12 16

110

Merge

1 4 7 9 16 2 3 10 11 12

1 2 3 4 7 9 10 11 12 16

110

Merge

1 4 7 9 16 2 3 10 11 12

1 2 3 4 7 9 10 11 12 16

110

Merge

1 4 7 9 16 2 3 10 11 12

1 2 3 4 7 9 10 11 12 16

110

Merge

1 4 7 9 16 2 3 10 11 12

1 2 3 4 7 9 10 11 12 16

110

Merge

1 4 7 9 16 2 3 10 11 12

1 2 3 4 7 9 10 11 12 16

110

Merge

1 4 7 9 16 2 3 10 11 12

1 2 3 4 7 9 10 11 12 16

110

Merge

1 4 7 9 16 2 3 10 11 12

1 2 3 4 7 9 10 11 12 16

110

Merge

1 4 7 9 16 2 3 10 11 12

1 2 3 4 7 9 10 11 12 16

110

Merge

1 4 7 9 16 2 3 10 11 12

1 2 3 4 7 9 10 11 12 16

110

Merge

1 4 7 9 16 2 3 10 11 12

1 2 3 4 7 9 10 11 12 16

110

Algorithm Merge(A, l,m, r)

Input: Array A with length n, indexes 1 ≤ l ≤ m ≤ r ≤ n.
A[l, . . . ,m], A[m+ 1, . . . , r] sorted

Output: A[l, . . . , r] sorted
1 B ← new Array(r − l + 1)
2 i← l; j ← m+ 1; k ← 1
3 while i ≤ m and j ≤ r do
4 if A[i] ≤ A[j] then B[k]← A[i]; i← i+ 1
5 else B[k]← A[j]; j ← j + 1
6 k ← k + 1;

7 while i ≤ m do B[k]← A[i]; i← i+ 1; k ← k + 1
8 while j ≤ r do B[k]← A[j]; j ← j + 1; k ← k + 1
9 for k ← l to r do A[k]← B[k − l + 1]

111

Mergesort

5 2 6 1 8 4 3 9

Split
5 2 6 1 8 4 3 9

Split
5 2 6 1 8 4 3 9

Split
5 2 6 1 8 4 3 9

Merge
2 5 1 6 4 8 3 9

Merge
1 2 5 6 3 4 8 9

Merge
1 2 3 4 5 6 8 9

112

Mergesort

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Merge

2 5 1 6 4 8 3 9
Merge

1 2 5 6 3 4 8 9
Merge

1 2 3 4 5 6 8 9

112

Mergesort

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9

Split
5 2 6 1 8 4 3 9

Split
5 2 6 1 8 4 3 9

Merge
2 5 1 6 4 8 3 9

Merge
1 2 5 6 3 4 8 9

Merge
1 2 3 4 5 6 8 9

112

Mergesort

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Merge

2 5 1 6 4 8 3 9
Merge

1 2 5 6 3 4 8 9
Merge

1 2 3 4 5 6 8 9

112

Mergesort

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9

Split
5 2 6 1 8 4 3 9

Merge
2 5 1 6 4 8 3 9

Merge
1 2 5 6 3 4 8 9

Merge
1 2 3 4 5 6 8 9

112

Mergesort

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Merge

2 5 1 6 4 8 3 9
Merge

1 2 5 6 3 4 8 9
Merge

1 2 3 4 5 6 8 9

112

Mergesort

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9

Merge
2 5 1 6 4 8 3 9

Merge
1 2 5 6 3 4 8 9

Merge
1 2 3 4 5 6 8 9

112

Mergesort

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Merge

2 5 1 6 4 8 3 9
Merge

1 2 5 6 3 4 8 9
Merge

1 2 3 4 5 6 8 9

112

Mergesort

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Merge

2 5 1 6 4 8 3 9

Merge
1 2 5 6 3 4 8 9

Merge
1 2 3 4 5 6 8 9

112

Mergesort

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Merge

2 5 1 6 4 8 3 9
Merge

1 2 5 6 3 4 8 9
Merge

1 2 3 4 5 6 8 9

112

Mergesort

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Merge

2 5 1 6 4 8 3 9
Merge

1 2 5 6 3 4 8 9

Merge
1 2 3 4 5 6 8 9

112

Mergesort

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Merge

2 5 1 6 4 8 3 9
Merge

1 2 5 6 3 4 8 9
Merge

1 2 3 4 5 6 8 9

112

Mergesort

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Merge

2 5 1 6 4 8 3 9
Merge

1 2 5 6 3 4 8 9
Merge

1 2 3 4 5 6 8 9

112

Algorithm (recursive 2-way) Mergesort(A, l, r)

Input: Array A with length n. 1 ≤ l ≤ r ≤ n
Output: A[l, . . . , r] sorted.
if l < r then

m← b(l + r)/2c // middle position
Mergesort(A, l,m) // sort lower half
Mergesort(A,m+ 1, r) // sort higher half
Merge(A, l,m, r) // Merge subsequences

113

Analysis

Recursion equation for the number of comparisons and key movements:

T (n) = T (
⌈
n

2

⌉
) + T (

⌊
n

2

⌋
) + Θ(n)

∈ Θ(n log n)

114

Analysis

Recursion equation for the number of comparisons and key movements:

T (n) = T (
⌈
n

2

⌉
) + T (

⌊
n

2

⌋
) + Θ(n) ∈ Θ(n log n)

114

Derivation for n = 2k

Let n = 2k, k > 0. Recurrence

T (n) =

d if n = 1
2T (n/2) + cn if n > 1

Apply recursively

T (n) = 2T (n/2) + cn = 2(2T (n/4) + cn/2) + cn

= 2(2(T (n/8) + cn/4) + cn/2) + cn = ...

= 2(2(...(2(2T (n/2k) + cn/2k−1)...) + cn/22) + cn/21) + cn

= 2kT (1) + 2k−1cn/2k−1 + 2k−2cn/2k−2 + ...+ 2k−kcn/2k−k︸ ︷︷ ︸
kterms

= nd+ cnk = nd+ cn log2 n ∈ Θ(n logn).

115

7.2 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]

116

Quicksort

What is the disadvantage of Mergesort?

Requires additional Θ(n) storage for merging.

How could we reduce the merge costs?

Make sure that the left part contains only smaller elements than the
right part.

How?
Pivot and Partition!

117

Quicksort

What is the disadvantage of Mergesort?

Requires additional Θ(n) storage for merging.

How could we reduce the merge costs?

Make sure that the left part contains only smaller elements than the
right part.

How?
Pivot and Partition!

117

Quicksort

What is the disadvantage of Mergesort?

Requires additional Θ(n) storage for merging.

How could we reduce the merge costs?

Make sure that the left part contains only smaller elements than the
right part.

How?
Pivot and Partition!

117

Quicksort

What is the disadvantage of Mergesort?

Requires additional Θ(n) storage for merging.

How could we reduce the merge costs?

Make sure that the left part contains only smaller elements than the
right part.

How?

Pivot and Partition!

117

Quicksort

What is the disadvantage of Mergesort?

Requires additional Θ(n) storage for merging.

How could we reduce the merge costs?

Make sure that the left part contains only smaller elements than the
right part.

How?
Pivot and Partition!

117

Use a pivot

1. Choose a (an arbitrary) pivot p
2. Partition A in two parts, one part L with the elements with A[i] ≤ p

and another part R with A[i] > p

3. Quicksort: Recursion on parts L and R

118

Use a pivot

1. Choose a (an arbitrary) pivot p

2. Partition A in two parts, one part L with the elements with A[i] ≤ p
and another part R with A[i] > p

3. Quicksort: Recursion on parts L and R

p

118

Use a pivot

1. Choose a (an arbitrary) pivot p
2. Partition A in two parts, one part L with the elements with A[i] ≤ p

and another part R with A[i] > p

3. Quicksort: Recursion on parts L and R

> ≤ ≤ > > ≤ ≤ > ≤p

118

Use a pivot

1. Choose a (an arbitrary) pivot p
2. Partition A in two parts, one part L with the elements with A[i] ≤ p

and another part R with A[i] > p

3. Quicksort: Recursion on parts L and R

>≤ ≤ > >≤ ≤ >≤p

118

Use a pivot

1. Choose a (an arbitrary) pivot p
2. Partition A in two parts, one part L with the elements with A[i] ≤ p

and another part R with A[i] > p

3. Quicksort: Recursion on parts L and R

>≤ ≤ > >≤ ≤ >≤p p≤

r1 n

118

Algorithm Partition(A, l, r, p)

Input: Array A, that contains the pivot p in A[l, . . . , r] at least once.
Output: Array A partitioned in [l, . . . , r] around p. Returns position of p.
while l ≤ r do

while A[l] < p do
l← l + 1

while A[r] > p do
r ← r − 1

swap(A[l], A[r])
if A[l] = A[r] then

l← l + 1

return l-1

119

Algorithm Quicksort(A, l, r)

Input: Array A with length n. 1 ≤ l ≤ r ≤ n.
Output: Array A, sorted in A[l, . . . , r].
if l < r then

Choose pivot p ∈ A[l, . . . , r]
k ← Partition(A, l, r, p)
Quicksort(A, l, k − 1)
Quicksort(A, k + 1, r)

120

Choice of the pivot.

The minimum is a bad pivot: worst case Θ(?)

p1

A good pivot has a linear number of elements on both sides.

p

≥ ε · n ≥ ε · n

121

Choice of the pivot.

The minimum is a bad pivot: worst case Θ(?)

p1 p2

A good pivot has a linear number of elements on both sides.

p

≥ ε · n ≥ ε · n

121

Choice of the pivot.

The minimum is a bad pivot: worst case Θ(?)

p1 p2 p3

A good pivot has a linear number of elements on both sides.

p

≥ ε · n ≥ ε · n

121

Choice of the pivot.

The minimum is a bad pivot: worst case Θ(?)

p1 p2 p3 p4

A good pivot has a linear number of elements on both sides.

p

≥ ε · n ≥ ε · n

121

Choice of the pivot.

The minimum is a bad pivot: worst case Θ(n2)

p1 p2 p3 p4 p5

A good pivot has a linear number of elements on both sides.

p

≥ ε · n ≥ ε · n

121

Choice of the pivot.

The minimum is a bad pivot: worst case Θ(n2)

p1 p2 p3 p4 p5

A good pivot has a linear number of elements on both sides.

p

≥ ε · n ≥ ε · n

121

Choice of the Pivot?

Randomness to our rescue (Tony Hoare, 1961). In each step choose a
random pivot.

1
4

1
4

1
2

schlecht schlechtgute Pivots

Probability for a good pivot in one trial: 1
2 =: ρ.

Probability for a good pivot after k trials: (1− ρ)k−1 · ρ.
Expected number of trials3: 1/ρ = 2

3Expected value of the geometric distribution:
122

Quicksort (arbitrary pivot)

2 4 5 6 8 3 7 9 1

2 1 3 6 8 5 7 9 4

1 2 3 4 5 8 7 9 6

1 2 3 4 5 6 7 9 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

123

Quicksort (arbitrary pivot)

2 4 5 6 8 3 7 9 1

2 1 3 6 8 5 7 9 4

1 2 3 4 5 8 7 9 6

1 2 3 4 5 6 7 9 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

123

Quicksort (arbitrary pivot)

2 4 5 6 8 3 7 9 1

2 1 3 6 8 5 7 9 4

1 2 3 4 5 8 7 9 6

1 2 3 4 5 6 7 9 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

123

Quicksort (arbitrary pivot)

2 4 5 6 8 3 7 9 1

2 1 3 6 8 5 7 9 4

1 2 3 4 5 8 7 9 6

1 2 3 4 5 6 7 9 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

123

Quicksort (arbitrary pivot)

2 4 5 6 8 3 7 9 1

2 1 3 6 8 5 7 9 4

1 2 3 4 5 8 7 9 6

1 2 3 4 5 6 7 9 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

123

Quicksort (arbitrary pivot)

2 4 5 6 8 3 7 9 1

2 1 3 6 8 5 7 9 4

1 2 3 4 5 8 7 9 6

1 2 3 4 5 6 7 9 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

123

Quicksort (arbitrary pivot)

2 4 5 6 8 3 7 9 1

2 1 3 6 8 5 7 9 4

1 2 3 4 5 8 7 9 6

1 2 3 4 5 6 7 9 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

123

Quicksort (arbitrary pivot)

2 4 5 6 8 3 7 9 1

2 1 3 6 8 5 7 9 4

1 2 3 4 5 8 7 9 6

1 2 3 4 5 6 7 9 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

123

Quicksort (arbitrary pivot)

2 4 5 6 8 3 7 9 1

2 1 3 6 8 5 7 9 4

1 2 3 4 5 8 7 9 6

1 2 3 4 5 6 7 9 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

123

Quicksort (arbitrary pivot)

2 4 5 6 8 3 7 9 1

2 1 3 6 8 5 7 9 4

1 2 3 4 5 8 7 9 6

1 2 3 4 5 6 7 9 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

123

Analysis: number comparisons

Worst case.

Pivot = min or max; number comparisons:

T (n) = T (n− 1) + c · n, T (1) = 0 ⇒ T (n) ∈ Θ(n2)

124

Analysis: number comparisons

Worst case. Pivot = min or max; number comparisons:

T (n) = T (n− 1) + c · n, T (1) = 0 ⇒ T (n) ∈ Θ(n2)

124

Analysis (randomized quicksort)

Theorem 4
On average randomized quicksort requires O(n · log n) comparisons.

(without proof.)

125

Practical Considerations.

Practically the pivot is often the median of three elements. For example:
Median3(A[l], A[r], A[bl + r/2c]).

126

8. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1 - 12.3]

127

Trees

Trees are
Generalized lists: nodes can have more than one successor
Special graphs: graphs consist of nodes and edges. A tree is a fully
connected, directed, acyclic graph.

128

Trees

Use
Decision trees: hierarchic representation of
decision rules
syntax trees: parsing and traversing of
expressions, e.g. in a compiler
Code tress: representation of a code, e.g. morse
alphabet, hu�man code
Search trees: allow e�cient searching for an
element by value

129

Examples

start

E

I

S

H V

U

F U

A

R

L A

W

P I

T

N

D

B X

K

C Y

M

G

Z Q

O

Ö CH

longshort

Morsealphabet

130

Examples

3/5 + 7.0

+

/

3 5

7.0

Expression tree

131

Nomenclature

Wurzel

W

I E

K

parent

child

inner node

leaves

Order of the tree: maximum number of child nodes, here: 3
Height of the tree: maximum path length root – leaf (here: 4)

132

Binary Trees

A binary tree is
either a leaf, i.e. an empty tree,
or an inner leaf with two trees Tl (left subtree) and Tr (right subtree) as
left and right successor.

In each inner node v we store
a key v.key and
two nodes v.left and v.right to the roots of the left and right subtree.

a leaf is represented by the null-pointer

key

left right

133

Linked List Node in Python

1 5 6 null
ListNode

key next

class ListNode:
entries key, next implicit via constructor

def __init__(self, key , next = None):
"""Constructor that takes a key and, optionally, next."""
self.key = key
self.next = next

}

134

Now: tree nodes in Python

class SearchNode:
implicit entries key, left, right

def __init__(self, k, l=None, r=None):
Constructor that takes a key k,
and optionally a left and right node.
self.key = k
self.left, self.right = l, r

5

3 8

2

None None

None None None

SearchNode
key

left right

135

Now: tree nodes in Python

class SearchNode:
implicit entries key, left, right

def __init__(self, k, l=None, r=None):
Constructor that takes a key k,
and optionally a left and right node.
self.key = k
self.left, self.right = l, r

5

3 8

2

None None

None None None

SearchNode
key

left right 135

Binary search tree
A binary search tree is a binary tree that fulfils the search tree property:

Every node v stores a key
Keys in left subtree v.left are smaller than v.key
Keys in right subtree v.right are greater than v.key

16

7

5

2

10

9 15

18

17 30

99

136

Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)

→ null

137

Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)

→ null

137

Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)

→ null

137

Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)→ null

137

Searching in Python

def findNode(root, key):
n = root
while n != None and n.key != key:

if key < n.key:
n = n.left

else:
n = n.right

return n

138

Height of a tree

The height h(T) of a binary tree T with root r is given by

h(r) =

0 if r = null
1 + max{h(r.left), h(r.right)} otherwise.

The worst case run time of the search is thus O(h(T))

139

Insertion of a key

Insertion of the key k
Search for k
If successful search: e.g. output
error
Of no success: insert the key at the
leaf reached

8

4

5

13

10

9

19

Insert (5)

140

Insert Nodes in Python

def addNode(root, key):
n = root
if n == None:

root = Node(key)
while n.key != key:

if key < n.key:
if n.left == None:

n.left = Node(key)
n = n.left

else:
if n.right == None:

n.right = Node(key)
n = n.right

return root
141

Tree in Python

class Tree:
def __init__(self):

self.root = None

def find(self,key):
return findNode(self.root, key)

def has(self,key):
return self.find(key) != None

def add(self,key):
self.root = addNode(self.root, key)

....
142

Remove node

Three cases possible:
Node has no children
Node has one child
Node has two children

[Leaves do not count here]

8

3

5

4

13

10

9

19

143

Remove node

Node has no children
Simple case: replace node by leaf.

8

3

5

4

13

10

9

19

remove(4)−→

8

3

5

13

10

9

19

144

Remove node

Node has one child
Also simple: replace node by single child.

8

3

5

4

13

10

9

19

remove(3)−→

8

5

4

13

10

9

19

145

Remove node

Node v has two children

The following observation helps: the smallest
key in the right subtree v.right (the symmet-
ric successor of v)

is smaller than all keys in v.right
is greater than all keys in v.left
and cannot have a left child.

Solution: replace v by its symmetric succes-
sor.

8

3

5

4

13

10

9

19

146

By symmetry...

Node v has two children

Also possible: replace v by its symmetric pre-
decessor.

Implementation: devil is in the detail!

8

3

5

4

13

10

9

19

147

Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v
w ← v.right
x← w.left
while x 6= null do

w ← x
x← x.left

return w

148

Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).

8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then v.

4, 5, 3, 9, 10, 19, 13, 8

inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

149

Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19

postorder: Tleft(v), then Tright(v), then v.

4, 5, 3, 9, 10, 19, 13, 8

inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

149

Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then v.

4, 5, 3, 9, 10, 19, 13, 8
inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

149

Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then v.
4, 5, 3, 9, 10, 19, 13, 8

inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

149

Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then v.
4, 5, 3, 9, 10, 19, 13, 8
inorder: Tleft(v), then v, then Tright(v).

3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

149

Traversal possibilities

preorder: v, then Tleft(v), then Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then v.
4, 5, 3, 9, 10, 19, 13, 8
inorder: Tleft(v), then v, then Tright(v).
3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

149

Degenerated search trees

9

5

4 8

13

10 19

Insert 9,5,13,4,8,10,19
ideally balanced

4

5

8

9

10

13

19

Insert 4,5,8,9,10,13,19
linear list

19

13

10

9

8

5

4

Insert 19,13,10,9,8,5,4
linear list

150

Probabilistically

A search tree constructed from a random sequence of numbers provides
an an expected path length of O(log n).
Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(

√
n).

Balanced trees make sure (e.g. with rotations) during insertion or deletion
that the tree stays balanced and provide a O(log n) Worst-case guarantee.

151

9. Heaps

Datenstruktur optimiert zum schnellen Extrahieren von Minimum oder
Maximum und Sortieren. [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

152

[Max-]Heap*

Binary tree with the following proper-
ties

1. complete up to the lowest level
2. Gaps (if any) of the tree in the

last level to the right
3. Heap-Condition:

Max-(Min-)Heap: key of a child
smaller (greater) that that of the
parent node

root

22

20

16

3 2

12

8 11

18

15

14

17

parent

child

leaves

*Heap(data structure), not: as in “heap and stack” (memory allocation)

153

[Max-]Heap*

Binary tree with the following proper-
ties

1. complete up to the lowest level

2. Gaps (if any) of the tree in the
last level to the right

3. Heap-Condition:
Max-(Min-)Heap: key of a child
smaller (greater) that that of the
parent node

root

22

20

16

3 2

12

8 11

18

15

14

17

parent

child

leaves

*Heap(data structure), not: as in “heap and stack” (memory allocation)

153

[Max-]Heap*

Binary tree with the following proper-
ties

1. complete up to the lowest level
2. Gaps (if any) of the tree in the

last level to the right

3. Heap-Condition:
Max-(Min-)Heap: key of a child
smaller (greater) that that of the
parent node

root

22

20

16

3 2

12

8 11

18

15

14

17

parent

child

leaves

*Heap(data structure), not: as in “heap and stack” (memory allocation)

153

[Max-]Heap*

Binary tree with the following proper-
ties

1. complete up to the lowest level
2. Gaps (if any) of the tree in the

last level to the right
3. Heap-Condition:

Max-(Min-)Heap: key of a child
smaller (greater) that that of the
parent node

root

22

20

16

3 2

12

8 11

18

15

14

17

parent

child

leaves

*Heap(data structure), not: as in “heap and stack” (memory allocation)

153

Heap as Array

Tree→ Array:
children(i) = {2i, 2i+ 1}
parent(i) = bi/2c

22
1

20
2

18
3

16
4

12
5

15
6

17
7

3
8

2
9

8
10

11
11

14
12

parent

Children

22

20

16

3 2

12

8 11

18

15

14

17

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11] [12]

Depends on the starting index4

4For array that start at 0: {2i, 2i+ 1} → {2i+ 1, 2i+ 2}, bi/2c → b(i− 1)/2c
154

Height of a Heap

What is the height H(n) of Heap with n nodes? On the i-th level of a
binary tree there are at most 2i nodes. Up to the last level of a heap all
levels are filled with values.

H(n) = min{h ∈ N :
h−1∑
i=0

2i ≥ n}

with ∑h−1
i=0 2i = 2h − 1:

H(n) = min{h ∈ N : 2h ≥ n+ 1},

thus
H(n) = dlog2(n+ 1)e.

155

Insert

Insert new element at the first free
position. Potentially violates the heap
property.
Reestablish heap property: climb
successively
Worst case number of operations: O(log n)

22

20

16

3 2

12

8 11

18

15

14

17

156

Insert

Insert new element at the first free
position. Potentially violates the heap
property.

Reestablish heap property: climb
successively
Worst case number of operations: O(log n)

22

20

16

3 2

12

8 11

18

15

14 21

17

156

Insert

Insert new element at the first free
position. Potentially violates the heap
property.
Reestablish heap property: climb
successively

Worst case number of operations: O(log n)

22

20

16

3 2

12

8 11

18

21

14 15

17

156

Insert

Insert new element at the first free
position. Potentially violates the heap
property.
Reestablish heap property: climb
successively

Worst case number of operations: O(log n)

22

20

16

3 2

12

8 11

21

18

14 15

17

156

Insert

Insert new element at the first free
position. Potentially violates the heap
property.
Reestablish heap property: climb
successively
Worst case number of operations: O(log n)

22

20

16

3 2

12

8 11

21

18

14 15

17

156

Algorithm Sift-Up(A,m)

Input: Array A with at least m elements and Max-Heap-Structure on
A[1, . . . ,m− 1]

Output: Array A with Max-Heap-Structure on A[1, . . . ,m].
v ← A[m] // value
c← m // current position (child)
p← bc/2c // parent node
while c > 1 and v > A[p] do

A[c]← A[p] // Value parent node → current node
c← p // parent node → current node
p← bc/2c

A[c]← v // value → root of the (sub)tree

157

Remove the maximum

Replace the maximum by the lower right
element
Reestablish heap property: sink
successively (in the direction of the
greater child)
Worst case number of operations: O(log n)

21

20

16

3 2

12

8 11

18

15

14

17

158

Remove the maximum

Replace the maximum by the lower right
element

Reestablish heap property: sink
successively (in the direction of the
greater child)
Worst case number of operations: O(log n)

14

20

16

3 2

12

8 11

18

15 17

158

Remove the maximum

Replace the maximum by the lower right
element
Reestablish heap property: sink
successively (in the direction of the
greater child)

Worst case number of operations: O(log n)

20

14

16

3 2

12

8 11

18

15 17

158

Remove the maximum

Replace the maximum by the lower right
element
Reestablish heap property: sink
successively (in the direction of the
greater child)

Worst case number of operations: O(log n)

20

16

14

3 2

12

8 11

18

15 17

158

Remove the maximum

Replace the maximum by the lower right
element
Reestablish heap property: sink
successively (in the direction of the
greater child)
Worst case number of operations: O(log n)

20

16

14

3 2

12

8 11

18

15 17

158

Why this is correct: Recursive heap structure

A heap consists of two heaps:

22

20

16

3 2

12

8 11

18

15

14

17

159

Why this is correct: Recursive heap structure

A heap consists of two heaps:

22

20

16

3 2

12

8 11

18

15

14

17

159

Algorithm SiftDown(A, i,m)

Input: Array A with heap structure for the children of i. Last element m.
Output: Array A with heap structure for i with last element m.
while 2i ≤ m do

j ← 2i; // j left child
if j < m and A[j] < A[j + 1] then

j ← j + 1; // j right child with greater key

if A[i] < A[j] then
swap(A[i], A[j])
i← j; // keep sinking down

else
i← m; // sift down finished

160

Sort heap

A[1, ..., n] is a Heap.
While n > 1

swap(A[1], A[n])
SiftDown(A, 1, n− 1);
n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

161

Sort heap

A[1, ..., n] is a Heap.
While n > 1

swap(A[1], A[n])
SiftDown(A, 1, n− 1);
n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

161

Sort heap

A[1, ..., n] is a Heap.
While n > 1

swap(A[1], A[n])
SiftDown(A, 1, n− 1);
n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

161

Sort heap

A[1, ..., n] is a Heap.
While n > 1

swap(A[1], A[n])
SiftDown(A, 1, n− 1);
n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

161

Sort heap

A[1, ..., n] is a Heap.
While n > 1

swap(A[1], A[n])
SiftDown(A, 1, n− 1);
n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

161

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence:

Induction from below!

162

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

162

Algorithm HeapSort(A, n)

Input: Array A with length n.
Output: A sorted.
// Build the heap.
for i← n/2 downto 1 do

SiftDown(A, i, n);

// Now A is a heap.
for i← n downto 2 do

swap(A[1], A[i])
SiftDown(A, 1, i− 1)

// Now A is sorted.

163

Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node 2 key comparisons.
⇒ sorting a heap costs in the worst case 2 log n comparisons.
Number of memory movements of sorting a heap also O(n log n).

164

Analysis: creating a heap
Calls to siftDown: n/2.
Thus number of comparisons and movements: v(n) ∈ O(n logn).
But mean length of the sift-down paths is much smaller:
We use that h(n) = dlog2 n+ 1e = blog2 nc+ 1 für n > 0

v(n) =
blog2 nc∑
l=0

2l︸︷︷︸
number heaps on level l

·(blog2 nc+ 1− l︸ ︷︷ ︸
height heaps on level l

−1) =
blog2 nc∑
k=0

2blog2 nc−k · k

= 2blog2 nc ·
blog2 nc∑
k=0

k

2k ≤ n ·
∞∑
k=0

k

2k ≤ n · 2 ∈ O(n)

with s(x) :=
∑∞
k=0 kx

k = x
(1−x)2 (0 < x < 1) and s(1

2) = 2

165

10. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap.
Problem 13-3]

166

Objective

Searching, insertion and removal of a key in a tree generated from n keys
inserted in random order takes expected number of steps O(log2 n).
But worst case Θ(n) (degenerated tree).
Goal: avoidance of degeneration. Artificial balancing of the tree for each
update-operation of a tree.
Balancing: guarantee that a tree with n nodes always has a height of
O(log n).
Adelson-Venskii and Landis (1962): AVL-Trees

167

Balance of a node

The height balance of a node v is defined
as the height di�erence of its sub-trees
Tl(v) and Tr(v)

bal(v) := h(Tr(v))− h(Tl(v))

v

Tl(v)

Tr(v)

hl
hr

bal(v)

168

AVL Condition

AVL Condition: for eacn node v of a tree
bal(v) ∈ {−1, 0, 1}

v

Tl(v)

Tr(v)

h h+ 1

h+ 2

169

(Counter-)Examples

AVL tree with height 2
AVL tree with height 3 No AVL tree

170

Number of Leaves

1. observation: a binary search tree with n keys provides exactly n+ 1
leaves. Simple induction argument.

The binary search tree with n = 0 keys has m = 1 leaves
When a key is added (n→ n+ 1), then it replaces a leaf and adds two new
leafs (m→ m− 1 + 2 = m+ 1).

2. observation: a lower bound of the number of leaves in a search tree
with given height implies an upper bound of the height of a search tree
with given number of keys.

171

Lower bound of the leaves

AVL tree with height 1 has
N(1) := 2 leaves.

AVL tree with height 2 has at
least N(2) := 3 leaves.

172

Lower bound of the leaves for h > 2

Height of one subtree ≥ h− 1.
Height of the other subtree ≥ h− 2.

Minimal number of leaves N(h) is

N(h) = N(h− 1) +N(h− 2)

v

Tl(v)

Tr(v)

h− 2 h− 1

h

Overal we have N(h) = Fh+2 with Fibonacci-numbers F0 := 0, F1 := 1,
Fn := Fn−1 + Fn−2 for n > 1.

173

Fibonacci Numbers, closed Form

It holds that

Fi = 1√
5

(φi − φ̂i)

with the roots φ, φ̂ of the golden ratio equation x2 − x− 1 = 0:

φ = 1 +
√

5
2 ≈ 1.618

φ̂ = 1−
√

5
2 ≈ −0.618

174

Fibonacci Numbers, Inductive Proof
Fi

!= 1√
5(φi − φ̂i) [∗]

(
φ = 1+

√
5

2 , φ̂ = 1−
√

5
2

)
.

1. Immediate for i = 0, i = 1.

2. Let i > 2 and claim [∗] true for all Fj , j < i.

Fi
def= Fi−1 + Fi−2

[∗]= 1√
5

(φi−1 − φ̂i−1) + 1√
5

(φi−2 − φ̂i−2)

= 1√
5

(φi−1 + φi−2)− 1√
5

(φ̂i−1 + φ̂i−2) = 1√
5
φi−2(φ+ 1)− 1√

5
φ̂i−2(φ̂+ 1)

(φ, φ̂ fulfil x+ 1 = x2)

= 1√
5
φi−2(φ2)− 1√

5
φ̂i−2(φ̂2) = 1√

5
(φi − φ̂i).

175

Tree Height

Because |φ̂| < 1, overal we have

N(h) ∈ Θ

(1 +
√

5
2

)h ⊆ Ω(1.618h)

and thus

N(h) ≥ c · 1.618h

⇒ h ≤ 1.44 log2 n+ c′.

An AVL tree is asymptotically not more than 44% higher than a perfectly
balanced tree.5

5The perfectly balanced tree has a height of dlog2 n+ 1e
176

Insertion

Balance
Keep the balance stored in each node
Re-balance the tree in each update-operation

New node n is inserted:
Insert the node as for a search tree.
Check the balance condition increasing from n to the root.

177

Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Finished in both cases because the subtree height did not change

178

Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)

179

upin(p) - invariant

When upin(p) is called it holds that
the subtree from p is grown and
bal(p) ∈ {−1,+1}

180

upin(p)

Assumption: p is left son of pp6

=⇒

pp +1 pp 0

p p

case 1: bal(pp) = +1, done.

=⇒

pp 0 pp −1

p p

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

6If p is a right son: symmetric cases with exchange of +1 and −1
181

upin(p)

Assumption: p is left son of pp

pp −1

p

case 3: bal(pp) = −1,

This case is problematic: adding n to the subtree from pp has violated the
AVL-condition. Re-balance!
Two cases bal(p) = −1, bal(p) = +1

182

Rotations
case 1.1 bal(p) = −1. 7

y

x

t1

t2

t3

pp −2

p −1

h

h− 1

h− 1

h+ 2 h

=⇒
rotation

right

x

y

t1 t2 t3

pp 0

p 0

h h− 1 h− 1

h+ 1 h+ 1

7p right son: ⇒ bal(pp) = bal(p) = +1, left rotation
183

Rotations
case 1.1 bal(p) = −1. 8

z

x

y

t1
t2 t3

t4

pp −2

p +1

h −1/+ 1

h− 1

h− 1
h− 2

h− 2
h− 1

h− 1

h+ 2 h

=⇒
double
rotation
left-right

y

x z

t1

t2 t3
t4

pp 0

0/− 1 +1/0

h− 1 h− 1
h− 2

h− 2
h− 1

h− 1

h+ 1

8p right son⇒ bal(pp) = +1, bal(p) = −1, double rotation right left
184

Analysis

Tree height: O(log n).
Insertion like in binary search tree.
Balancing via recursion from node to the root. Maximal path lenght
O(log n).

Insertion in an AVL-tree provides run time costs of O(log n).

185

Deletion
Case 1: Children of node n are both leaves Let p be parent node of n. ⇒
Other subtree has height h′ = 0, 1 or 2.
h′ = 1: Adapt bal(p).
h′ = 0: Adapt bal(p). Call upout(p).
h′ = 2: Rebalanciere des Teilbaumes. Call upout(p).

p

n

h = 0, 1, 2

−→

p

h = 0, 1, 2

186

Deletion

Case 2: one child k of node n is an inner node
Replace n by k. upout(k)

p

n

k
−→

p

k

187

Deletion

Case 3: both children of node n are inner nodes
Replace n by symmetric successor. upout(k)
Deletion of the symmetric successor is as in case 1 or 2.

188

upout(p)

Let pp be the parent node of p.
(a) p left child of pp

1. bal(pp) = −1 ⇒ bal(pp)← 0. upout(pp)
2. bal(pp) = 0 ⇒ bal(pp)← +1.
3. bal(pp) = +1⇒ next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and −1.

189

upout(p)

Case (a).3: bal(pp) = +1. Let q be brother of p
(a).3.1: bal(q) = 0.9

ypp +1

xp 0 zq 0

1 2

3 4

h− 1 h− 1

h+ 1 h+ 1

=⇒
Left Rotate(y)

z −1

y +1

x 0

1 2

3

4

h− 1 h− 1

h+ 1

h+ 1

9(b).3.1: bal(pp) = −1, bal(q) = −1, Right rotation 190

upout(p)

Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.10

ypp +1

xp 0 zq +1

1 2

3

4

h− 1 h− 1

h

h+ 1

=⇒
Left Rotate(y)

z 0r

y 0

x 0

1 2 3 4

h− 1 h− 1 h h+ 1

plus upout(r).
10(b).3.2: bal(pp) = −1, bal(q) = +1, Right rotation+upout

191

upout(p)

Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = −1.11

ypp +1

xp 0 zq −1

w

1 2

3 4

5
h− 1 h− 1

h

=⇒
Rotate right (z)

left (y)

w 0r

y 0

x

z

0

1 2 3 4 5

h− 1 h− 1 h

plus upout(r).
11(b).3.3: bal(pp) = −1, bal(q) = −1, left-right rotation + upout

192

Conclusion

AVL trees have worst-case asymptotic runtimes of O(log n) for searching,
insertion and deletion of keys.
Insertion and deletion is relatively involved and an overkill for really
small problems.

193

11. Hashing

Hash Tables, Pre-Hashing, Hashing, Resolving Collisions using Chaining,
Simple Uniform Hashing, Popular Hash Functions, Table-Doubling, Open
Addressing: Probing [Ottman/Widmayer, Kap. 4.1-4.3.2, 4.3.4, Cormen et al,
Kap. 11-11.4]

194

Motivating Example

Gloal: E�cient management of a table of all n ETH-students of
Possible Requirement: fast access (insertion, removal, find) of a dataset
by name

195

Dictionary

Abstract Data Type (ADT) D to manage items12 i with keys k ∈ K with
operations

D.insert(i): Insert or replace i in the dictionary D.
D.delete(i): Delete i from the dictionary D. Not existing⇒ error
message.
D.search(k): Returns item with key k if it exists.

12Key-value pairs (k, v), in the following we consider mainly the keys
196

Dictionaries in Python

fruits = {
"banana": 2.95, "kiwi": 0.70,
"pear": 4.20, "apple": 3.95

}

fruits["melon"] = 3.95
fruits["banana"] = 1.90
print("banana", fruits["banana"])
print("melon in fruits", "melon" in
fruits)print("onion in fruits"
, "onion" in fruits)
del fruits["strawberry"]
for name,price in fruits.items():

print(name,"->",price)

dictionary

insert
update

find

remove
iterate

197

Dictionaries in Java

Map<String,Double> fruits =
new HashMap<String,Double>();

fruits.put("banana", 2.95);
fruits.put("kiwi", 0.70);
fruits.put("strawberry", 9.95);
fruits.put("pear", 4.20);
fruits.put("apple", 3.95);
fruits.put("banana", 2.90);
Out.println("banana " + fruits.get("banana"));
fruits.remove("banana");
for (String s: fruits.keySet())

Out.println(s+" " + fruits.get(s));

dictionary

insert

update
find

remove
iterate

198

Motivation / Use
Perhaps the most popular data structure.

Supported in many programming languages (C++, Java, Python, Ruby,
Javascript, C# ...)
Obvious use

Databases, Spreadsheets
Symbol tables in compilers and interpreters

Less obvious

Substrin Search (Google, grep)
String commonalities (Document distance, DNA)
File Synchronisation
Cryptography: File-transfer and identification

199

1. Idea: Direct Access Table (Array)

Index Item
0 -
1 -
2 -
3 [3,value(3)]
4 -
5 -
...

...
k [k,value(k)]
...

...

Problems

1. Keys must be non-negative integers
2. Large key-range⇒ large array

200

1. Idea: Direct Access Table (Array)

Index Item
0 -
1 -
2 -
3 [3,value(3)]
4 -
5 -
...

...
k [k,value(k)]
...

...

Problems
1. Keys must be non-negative integers

2. Large key-range⇒ large array

200

1. Idea: Direct Access Table (Array)

Index Item
0 -
1 -
2 -
3 [3,value(3)]
4 -
5 -
...

...
k [k,value(k)]
...

...

Problems
1. Keys must be non-negative integers
2. Large key-range⇒ large array

200

Solution to the first problem: Pre-hashing

Prehashing: Map keys to positive integers using a function ph : K → N

Theoretically always possible because each key is stored as a
bit-sequence in the computer
Theoretically also: x = y ⇔ ph(x) = ph(y)
Practically: APIs o�er functions for pre-hashing. (Java:
object.hashCode(), C++: std::hash<>, Python: hash(object))
APIs map the key from the key set to an integer with a restricted size.13

13Therefore the implication ph(x) = ph(y)⇒ x = y does not hold any more for all x,y.
201

Prehashing Example : String

Mapping Name s = s1s2 . . . sls to key

ph(s) =
ls−1∑
i=0

sls−i · bi
 mod 2w

b so that di�erent names map to di�erent keys as far as possible.
b Word-size of the system (e.g. 32 or 64)

Example (Java) with b = 31, w = 32. Ascii-Values si.

Anna 7→ 2045632
Jacqueline 7→ 2042089953442505 mod 232 = 507919049

202

Implementation Prehashing (String) in Java

phb,m(s) =
(
l−1∑
i=0

sl−i+1 · bi
)

mod m

With b = 31 and m = 232 we get in Java14

int prehash(String s){
int h = 0;
for (int k = 0; k < s.length(); ++k){

h = h * b + s.charAt(k);
}
return h;

}
14Try to understand why this works

203

Lösung zum zweiten Problem: Hashing
Reduce the universe. Map (hash-function) h : K → {0, ...,m− 1} (m ≈ n =
number entries of the table)

Collision: h(ki) = h(kj).
204

Nomenclature

Hash funtion h: Mapping from the set of keys K to the index set
{0, 1, . . . ,m− 1} of an array (hash table).

h : K → {0, 1, . . . ,m− 1}.

Normally |K| � m. There are k1, k2 ∈ K with h(k1) = h(k2) (collision).
A hash function should map the set of keys as uniformly as possible to the
hash table.

205

Resolving Collisions: Chaining

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12

, 55 , 5 , 15 , 2 , 19 , 43

Direct Chaining of the Colliding entries

15

43

2 12

5

19

55

hash table

Colliding entries

0 1 2 3 4 5 6

206

Resolving Collisions: Chaining

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55

, 5 , 15 , 2 , 19 , 43

Direct Chaining of the Colliding entries

15

43

2

12

5

19

55

hash table

Colliding entries

0 1 2 3 4 5 6

206

Resolving Collisions: Chaining

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55 , 5

, 15 , 2 , 19 , 43

Direct Chaining of the Colliding entries

15

43

2

12

5

19

55

hash table

Colliding entries

0 1 2 3 4 5 6

206

Resolving Collisions: Chaining

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55 , 5 , 15

, 2 , 19 , 43

Direct Chaining of the Colliding entries

15

43

2

12

5

19

55

hash table

Colliding entries

0 1 2 3 4 5 6

206

Resolving Collisions: Chaining

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55 , 5 , 15 , 2

, 19 , 43

Direct Chaining of the Colliding entries

15

43

2

12

5

19

55

hash table

Colliding entries

0 1 2 3 4 5 6

206

Resolving Collisions: Chaining

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55 , 5 , 15 , 2 , 19

, 43

Direct Chaining of the Colliding entries

15

43

2 12

5

19

55

hash table

Colliding entries

0 1 2 3 4 5 6

206

Resolving Collisions: Chaining

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55 , 5 , 15 , 2 , 19 , 43
Direct Chaining of the Colliding entries

15

43

2 12

5

19

55

hash table

Colliding entries

0 1 2 3 4 5 6

206

Resolving Collisions: Chaining

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55 , 5 , 15 , 2 , 19 , 43
Direct Chaining of the Colliding entries

15

43

2 12

5

19

55

hash table

Colliding entries

0 1 2 3 4 5 6

206

Algorithm for Hashing with Chaining

insert(i) Check if key k of item i is in list at position h(k). If no, then
append i to the end of the list. Otherwise replace element by i.
find(k) Check if key k is in list at position h(k). If yes, return the data
associated to key k, otherwise return empty element null.
delete(k) Search the list at position h(k) for k. If successful, remove the
list element.

207

Worst-case Analysis

Worst-case: all keys are mapped to the same index.
⇒ Θ(n) per operation in the worst case.

208

Simple Uniform Hashing

Strong Assumptions: Each key will be mapped to one of the m available
slots

with equal probability (Uniformity)
and independent of where other keys are hashed (Independence).

209

Simple Uniform Hashing

Under the assumption of simple uniform hashing:
Expected length of a chain when n elements are inserted into a hash table
with m elements

E(Länge Kette j) = E

(
n−1∑
i=0
1(ki = j)

)
=

n−1∑
i=0
P(ki = j)

=
n∑
i=1

1
m

= n

m

α = n/m is called load factor of the hash table.

210

Simple Uniform Hashing

Theorem 5
Let a hash table with chaining be filled with load-factor α = n

m
< 1.

Under the assumption of simple uniform hashing, the next operation
has expected costs of ≤ 1 + α.

Consequence: if the number slots m of the hash table is always at least
proportional to the number of elements n of the hash table, n ∈ O(m)⇒
Expected Running time of Insertion, Search and Deletion is O(1).

211

Advantages and Disadvantages of Chaining

Advantages
Possible to overcommit: α > 1 allowed
Easy to remove keys.

Disadvantages
Memory consumption of the chains-

212

An Example of a popular Hash Function

Division method
h(k) = k mod m

Ideal: m prime, not too close to powers of 2 or 10
But often: m = 2k − 1 (k ∈ N)
Other method: multiplication method (cf. Cormen et al, Kap. 11.3).

213

Table size increase

We do not know beforehand how large n will be
Require m = Θ(n) at all times.

Table size needs to be adapted. Hash-Function changes⇒ rehashing
Allocate array A′ with size m′ > m

Insert each entry of A into A′ (with re-hashing the keys)
Set A← A′.
Costs O(n+m+m′).

How to choose m′?

214

Table size increase

1.Idea n = m⇒ m′ ← m+ 1
Increase for each insertion: Costs Θ(1 + 2 + 3 + · · ·+ n) = Θ(n2)
2.Idea n = m⇒ m′ ← 2m Increase only ifm = 2i:
Θ(1 + 2 + 4 + 8 + · · ·+ n) = Θ(n)
Few insertions cost linear time but on average we have Θ(1)

Jede Operation vom Hashing mit Verketten hat erwartet amortisierte
Kosten Θ(1).
(⇒ Amortized Analysis)

215

Amortisierte Analyse

General procedure for dynamic arrays (e.g. Java: ArrayList, Python: List)

The data structure provides, besides the data array, two numbers: size of
the array (capacity m) and the number of used entries (size n)
Double the size and copy entries when the list is full n = m ⇒ m← 2n.
Kosten Θ(m).
Runtime costs for n = 2k insertion operations:
Θ(1 + 2 + 4 + 8 + · · ·+ 2k) = Θ(2k+1 − 1) = Θ(n).

Costs per operation averaged over all operations = amortized costs = Θ(1)
per insertion operation

216

Open Addressing

Store the colliding entries directly in the hash table using a probing
function s : K × {0, 1, . . . ,m− 1} → {0, 1, . . . ,m− 1}
Key table position along a probing sequence

S(k) := (s(k, 0), s(k, 1), . . . , s(k,m− 1)) mod m

Probing sequence must for each k ∈ K be a permutation of
{0, 1, . . . ,m− 1}

Notational clarification: this method uses open addressing(meaning that the positions in
the hashtable are not fixed) but it is a closed hashing procedure (because the entries
stay in the hashtable)

217

Algorithms for open addressing

insert(i) Search for kes k of i in the table according to S(k). If k is not
present, insert k at the first free position in the probing sequence.
Otherwise error message.
find(k) Traverse table entries according to S(k). If k is found, return
data associated to k. Otherwise return an empty element null.
delete(k) Search k in the table according to S(k). If k is found, replace
it with a special key removed.

218

Linear Probing

s(k, j) = h(k) + j ⇒ S(k) = (h(k), h(k) + 1, . . . , h(k) +m− 1) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Key

12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2 19

219

Linear Probing

s(k, j) = h(k) + j ⇒ S(k) = (h(k), h(k) + 1, . . . , h(k) +m− 1) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Key 12

, 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2 19

219

Linear Probing

s(k, j) = h(k) + j ⇒ S(k) = (h(k), h(k) + 1, . . . , h(k) +m− 1) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Key 12 , 55

, 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12

555 15 2 19

219

Linear Probing

s(k, j) = h(k) + j ⇒ S(k) = (h(k), h(k) + 1, . . . , h(k) +m− 1) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Key 12 , 55 , 5

, 15 , 2 , 19

0 1 2 3 4 5 6

12 55

5 15 2 19

219

Linear Probing

s(k, j) = h(k) + j ⇒ S(k) = (h(k), h(k) + 1, . . . , h(k) +m− 1) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Key 12 , 55 , 5 , 15

, 2 , 19

0 1 2 3 4 5 6

12 555

15 2 19

219

Linear Probing

s(k, j) = h(k) + j ⇒ S(k) = (h(k), h(k) + 1, . . . , h(k) +m− 1) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Key 12 , 55 , 5 , 15 , 2

, 19

0 1 2 3 4 5 6

12 555 15

2 19

219

Linear Probing

s(k, j) = h(k) + j ⇒ S(k) = (h(k), h(k) + 1, . . . , h(k) +m− 1) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Key 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2

19

219

Linear Probing

s(k, j) = h(k) + j ⇒ S(k) = (h(k), h(k) + 1, . . . , h(k) +m− 1) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Key 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2 19

219

Discussion

Example α = 0.95

The unsuccessful search consideres 200 table entries on average! (here
without derivation).

Disadvantage of the method?

Primary clustering: similar hash addresses have similar probing sequences
⇒ long contiguous areas of used entries.

220

Discussion

Example α = 0.95

The unsuccessful search consideres 200 table entries on average! (here
without derivation).

Disadvantage of the method?

Primary clustering: similar hash addresses have similar probing sequences
⇒ long contiguous areas of used entries.

220

Discussion

Example α = 0.95

The unsuccessful search consideres 200 table entries on average! (here
without derivation).

Disadvantage of the method?

Primary clustering: similar hash addresses have similar probing sequences
⇒ long contiguous areas of used entries.

220

Discussion

Example α = 0.95

The unsuccessful search consideres 200 table entries on average! (here
without derivation).

Disadvantage of the method?

Primary clustering: similar hash addresses have similar probing sequences
⇒ long contiguous areas of used entries.

220

Quadratic Probing

s(k, j) = h(k) + dj/2e2(−1)j+1

S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . .) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys

12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 55515 219

221

Quadratic Probing

s(k, j) = h(k) + dj/2e2(−1)j+1

S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . .) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12

, 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 55515 219

221

Quadratic Probing

s(k, j) = h(k) + dj/2e2(−1)j+1

S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . .) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55

, 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12

55515 219

221

Quadratic Probing

s(k, j) = h(k) + dj/2e2(−1)j+1

S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . .) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55 , 5

, 15 , 2 , 19

0 1 2 3 4 5 6

12 55

515 219

221

Quadratic Probing

s(k, j) = h(k) + dj/2e2(−1)j+1

S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . .) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55 , 5 , 15

, 2 , 19

0 1 2 3 4 5 6

12 555

15 219

221

Quadratic Probing

s(k, j) = h(k) + dj/2e2(−1)j+1

S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . .) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55 , 5 , 15 , 2

, 19

0 1 2 3 4 5 6

12 55515

219

221

Quadratic Probing

s(k, j) = h(k) + dj/2e2(−1)j+1

S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . .) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 55515 2

19

221

Quadratic Probing

s(k, j) = h(k) + dj/2e2(−1)j+1

S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . .) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 55515 219

221

Discussion

Example α = 0.95

Unsuccessfuly search considers 22 entries on average (here without deriva-
tion)

Problems of this method?

Secondary clustering: Synonyms k and k′ (with h(k) = h(k′)) travers the
same probing sequence.

222

Discussion

Example α = 0.95

Unsuccessfuly search considers 22 entries on average (here without deriva-
tion)

Problems of this method?

Secondary clustering: Synonyms k and k′ (with h(k) = h(k′)) travers the
same probing sequence.

222

Discussion

Example α = 0.95

Unsuccessfuly search considers 22 entries on average (here without deriva-
tion)

Problems of this method?

Secondary clustering: Synonyms k and k′ (with h(k) = h(k′)) travers the
same probing sequence.

222

Double Hashing

Two hash functions h(k) and h′(k). s(k, j) = h(k) + j · h′(k).
S(k) = (h(k), h(k) + h′(k), h(k) + 2h′(k), . . . , h(k) + (m− 1)h′(k)) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod 7, h′(k) = 1 + k mod 5.

Keys

12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2 19

223

Double Hashing

Two hash functions h(k) and h′(k). s(k, j) = h(k) + j · h′(k).
S(k) = (h(k), h(k) + h′(k), h(k) + 2h′(k), . . . , h(k) + (m− 1)h′(k)) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod 7, h′(k) = 1 + k mod 5.

Keys 12

, 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2 19

223

Double Hashing

Two hash functions h(k) and h′(k). s(k, j) = h(k) + j · h′(k).
S(k) = (h(k), h(k) + h′(k), h(k) + 2h′(k), . . . , h(k) + (m− 1)h′(k)) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod 7, h′(k) = 1 + k mod 5.

Keys 12 , 55

, 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12

555 15 2 19

223

Double Hashing

Two hash functions h(k) and h′(k). s(k, j) = h(k) + j · h′(k).
S(k) = (h(k), h(k) + h′(k), h(k) + 2h′(k), . . . , h(k) + (m− 1)h′(k)) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod 7, h′(k) = 1 + k mod 5.

Keys 12 , 55 , 5

, 15 , 2 , 19

0 1 2 3 4 5 6

12 55

5 15 2 19

223

Double Hashing

Two hash functions h(k) and h′(k). s(k, j) = h(k) + j · h′(k).
S(k) = (h(k), h(k) + h′(k), h(k) + 2h′(k), . . . , h(k) + (m− 1)h′(k)) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod 7, h′(k) = 1 + k mod 5.

Keys 12 , 55 , 5 , 15

, 2 , 19

0 1 2 3 4 5 6

12 555

15 2 19

223

Double Hashing

Two hash functions h(k) and h′(k). s(k, j) = h(k) + j · h′(k).
S(k) = (h(k), h(k) + h′(k), h(k) + 2h′(k), . . . , h(k) + (m− 1)h′(k)) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod 7, h′(k) = 1 + k mod 5.

Keys 12 , 55 , 5 , 15 , 2

, 19

0 1 2 3 4 5 6

12 555 15

2 19

223

Double Hashing

Two hash functions h(k) and h′(k). s(k, j) = h(k) + j · h′(k).
S(k) = (h(k), h(k) + h′(k), h(k) + 2h′(k), . . . , h(k) + (m− 1)h′(k)) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod 7, h′(k) = 1 + k mod 5.

Keys 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2

19

223

Double Hashing

Two hash functions h(k) and h′(k). s(k, j) = h(k) + j · h′(k).
S(k) = (h(k), h(k) + h′(k), h(k) + 2h′(k), . . . , h(k) + (m− 1)h′(k)) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod 7, h′(k) = 1 + k mod 5.

Keys 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2 19

223

Double Hashing

Probing sequence must permute all hash addresses. Thus h′(k) 6= 0 and
h′(k) may not divide m, for example guaranteed with m prime.
h′ should be as independent of h as possible (to avoid secondary
clustering)

Independence largely fulfilled by h(k) = k mod m and
h′(k) = 1 + k mod (m− 2) (m prime).

224

Uniform Hashing

Strong assumption: the probing sequence S(k) of a key l is equaly likely to
be any of the m! permutations of {0, 1, . . . ,m− 1}
(Double hashing is reasonably close)

225

Analysis of Uniform Hashing with Open Addressing

Theorem 6
Let an open-addressing hash table be filled with load-factor α = n

m
<

1. Under the assumption of uniform hashing, the next operation has
expected costs of ≤ 1

1−α .

Without Proof, cf. e.g. Cormen et al, Kap. 11.4

226

12. Graphs

Notation, Representation, Graph Traversal (DFS, BFS), Topological Sorting
[Ottman/Widmayer, Kap. 9.1 - 9.4,Cormen et al, Kap. 22]

227

Königsberg 1736

228

Königsberg 1736

228

Königsberg 1736

228

[Multi]Graph

A

B

D

C

edge

node

229

[Multi]Graph

A

B

D

C

edge

node

229

Cycles

Is there a cycle through the town (the graph)
that uses each bridge (each edge) exactly
once?

Euler (1736): no.
Such a cycle is called Eulerian path.
Eulerian path⇔ each node provides an even
number of edges (each node is of an even
degree).
‘⇒” is straightforward, “⇐” ist a bit more di�cult but
still elementary.

A

B

D

C

230

Cycles

Is there a cycle through the town (the graph)
that uses each bridge (each edge) exactly
once?
Euler (1736): no.

Such a cycle is called Eulerian path.
Eulerian path⇔ each node provides an even
number of edges (each node is of an even
degree).
‘⇒” is straightforward, “⇐” ist a bit more di�cult but
still elementary.

A

B

D

C

230

Cycles

Is there a cycle through the town (the graph)
that uses each bridge (each edge) exactly
once?
Euler (1736): no.
Such a cycle is called Eulerian path.

Eulerian path⇔ each node provides an even
number of edges (each node is of an even
degree).
‘⇒” is straightforward, “⇐” ist a bit more di�cult but
still elementary.

A

B

D

C

230

Cycles

Is there a cycle through the town (the graph)
that uses each bridge (each edge) exactly
once?
Euler (1736): no.
Such a cycle is called Eulerian path.
Eulerian path⇔ each node provides an even
number of edges (each node is of an even
degree).
‘⇒” is straightforward, “⇐” ist a bit more di�cult but
still elementary.

A

B

D

C

230

Notation
1

2 3

4 5
undirected

V ={1, 2, 3, 4, 5}
E ={{1, 2}, {1, 3}, {2, 3}, {2, 4},
{2, 5}, {3, 4}, {3, 5}, {4, 5}}

1

2 3

4 5
directed

V ={1, 2, 3, 4, 5}
E ={(1, 3), (2, 1), (2, 5), (3, 2),

(3, 4), (4, 2), (4, 5), (5, 3)}
231

Notation

A directed graph consists of a set V = {v1, . . . , vn} of nodes (Vertices) and
a set E ⊆ V × V of Edges. The same edges may not be contained more
than once.

1 2

3 4 5

loop

232

Notation

An undirected graph consists of a set V = {v1, . . . , vn} of nodes a and a
set E ⊆ {{u, v}|u, v ∈ V } of edges. Edges may bot be contained more than
once.15

1

2

3 4

5

undirected graph

15As opposed to the introductory example – it is then called multi-graph.
233

Notation

An undirected graph G = (V,E) without loops where E comprises all
edges between pairwise di�erent nodes is called complete.

1

2

3 4

5

a complete undirected graph

234

Notation

A graph where V can be partitioned into disjoint sets U and W such that
each e ∈ E provides a node in U and a node in W is called bipartite.

235

Notation

A weighted graph G = (V,E, c) is a graph G = (V,E) with an edge weight
function c : E → R. c(e) is called weight of the edge e.

0

1

2

3

4

5

2

1.5

4

1

4

3

236

Notation
For directed graphs G = (V,E)
w ∈ V is called adjacent to v ∈ V , if (v, w) ∈ E

Predecessors of v ∈ V : N−(v) := {u ∈ V |(u, v) ∈ E}.
Successors: N+(v) := {u ∈ V |(v, u) ∈ E}

N−(v) N+(v)

v

p1

p2

p3

s1

s2

237

Notation
For directed graphs G = (V,E)
w ∈ V is called adjacent to v ∈ V , if (v, w) ∈ E
Predecessors of v ∈ V : N−(v) := {u ∈ V |(u, v) ∈ E}.
Successors: N+(v) := {u ∈ V |(v, u) ∈ E}

N−(v) N+(v)

v

p1

p2

p3

s1

s2

237

Notation

For directed graphs G = (V,E)
In-Degree: deg−(v) = |N−(v)|,
Out-Degree: deg+(v) = |N+(v)|

v

deg−(v) = 3, deg+(v) = 2

w

deg−(w) = 1, deg+(w) = 1

238

Notation

For undirected graphs G = (V,E):
w ∈ V is called adjacent to v ∈ V , if {v, w} ∈ E

Neighbourhood of v ∈ V : N(v) = {w ∈ V |{v, w} ∈ E}
Degree of v: deg(v) = |N(v)| with a special case for the loops: increase
the degree by 2.

v

deg(v) = 5

w

deg(w) = 2

239

Notation

For undirected graphs G = (V,E):
w ∈ V is called adjacent to v ∈ V , if {v, w} ∈ E
Neighbourhood of v ∈ V : N(v) = {w ∈ V |{v, w} ∈ E}

Degree of v: deg(v) = |N(v)| with a special case for the loops: increase
the degree by 2.

v

deg(v) = 5

w

deg(w) = 2

239

Notation

For undirected graphs G = (V,E):
w ∈ V is called adjacent to v ∈ V , if {v, w} ∈ E
Neighbourhood of v ∈ V : N(v) = {w ∈ V |{v, w} ∈ E}
Degree of v: deg(v) = |N(v)| with a special case for the loops: increase
the degree by 2.

v

deg(v) = 5

w

deg(w) = 2

239

Relationship between node degrees and number of
edges

For each graph G = (V,E) it holds
1. ∑v∈V deg−(v) = ∑

v∈V deg+(v) = |E|, for G directed
2. ∑v∈V deg(v) = 2|E|, for G undirected.

240

Paths

Path: a sequence of nodes 〈v1, . . . , vk+1〉 such that for each i ∈ {1 . . . k}
there is an edge from vi to vi+1 .

Length of a path: number of contained edges k.
Weight of a path (in weighted graphs): ∑k

i=1 c((vi, vi+1)) (bzw.∑k
i=1 c({vi, vi+1}))

Simple path: path without repeating vertices

241

Paths

Path: a sequence of nodes 〈v1, . . . , vk+1〉 such that for each i ∈ {1 . . . k}
there is an edge from vi to vi+1 .
Length of a path: number of contained edges k.

Weight of a path (in weighted graphs): ∑k
i=1 c((vi, vi+1)) (bzw.∑k

i=1 c({vi, vi+1}))
Simple path: path without repeating vertices

241

Paths

Path: a sequence of nodes 〈v1, . . . , vk+1〉 such that for each i ∈ {1 . . . k}
there is an edge from vi to vi+1 .
Length of a path: number of contained edges k.
Weight of a path (in weighted graphs): ∑k

i=1 c((vi, vi+1)) (bzw.∑k
i=1 c({vi, vi+1}))

Simple path: path without repeating vertices

241

Paths

Path: a sequence of nodes 〈v1, . . . , vk+1〉 such that for each i ∈ {1 . . . k}
there is an edge from vi to vi+1 .
Length of a path: number of contained edges k.
Weight of a path (in weighted graphs): ∑k

i=1 c((vi, vi+1)) (bzw.∑k
i=1 c({vi, vi+1}))

Simple path: path without repeating vertices

241

Connectedness

An undirected graph is called connected, if for eacheach pair v, w ∈ V
there is a connecting path.
A directed graph is called strongly connected, if for each pair v, w ∈ V
there is a connecting path.
A directed graph is called weakly connected, if the corresponding
undirected graph is connected.

242

Simple Observations

generally: 0 ≤ |E| ∈ O(|V |2)
connected graph: |E| ∈ Ω(|V |)
complete graph: |E| = |V |·(|V |−1)

2 (undirected)
Maximally |E| = |V |2 (directed),|E| = |V |·(|V |+1)

2 (undirected)

243

Cycles

Cycle: path 〈v1, . . . , vk+1〉 with v1 = vk+1

Simple cycle: Cycle with pairwise di�erent v1, . . . , vk, that does not use
an edge more than once.
Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2 (loops
have length 1)

244

Representation using a Matrix

Graph G = (V,E) with nodes v1 . . . , vn stored as adjacency matrix
AG = (aij)1≤i,j≤n with entries from {0, 1}. aij = 1 if and only if edge from vi
to vj .

1 2

4

3

5


0 1 1 1 0
0 0 0 0 0
0 1 0 1 1
0 0 0 0 0
0 0 1 0 1


Memory consumption Θ(|V |2). AG is symmetric, if G undirected.

245

Representation with a List

Many graphs G = (V,E) with nodes v1, . . . , vn
provide much less than n2 edges. Represen-
tation with adjacency list: ArrayA[1], . . . , A[n],
Ai comprises a linked list of nodes in N+(vi).

1 2

4

3

5

1 2 3 4 5

2

3

4

2

4

5

3

5

Memory Consumption Θ(|V |+ |E|).

246

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V

Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor

Θ(n2) Θ(n)

(u, v) ∈ E ?

Θ(1) Θ(deg+ v)

Insert edge

Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

247

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n)

Θ(deg+ v)

find v ∈ V without neighbour/successor

Θ(n2) Θ(n)

(u, v) ∈ E ?

Θ(1) Θ(deg+ v)

Insert edge

Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

247

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor

Θ(n2) Θ(n)

(u, v) ∈ E ?

Θ(1) Θ(deg+ v)

Insert edge

Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

247

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2)

Θ(n)

(u, v) ∈ E ?

Θ(1) Θ(deg+ v)

Insert edge

Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

247

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2) Θ(n)

(u, v) ∈ E ?

Θ(1) Θ(deg+ v)

Insert edge

Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

247

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2) Θ(n)

(u, v) ∈ E ? Θ(1)

Θ(deg+ v)

Insert edge

Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

247

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2) Θ(n)

(u, v) ∈ E ? Θ(1) Θ(deg+ v)

Insert edge

Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

247

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2) Θ(n)

(u, v) ∈ E ? Θ(1) Θ(deg+ v)

Insert edge Θ(1)

Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

247

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2) Θ(n)

(u, v) ∈ E ? Θ(1) Θ(deg+ v)

Insert edge Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

247

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2) Θ(n)

(u, v) ∈ E ? Θ(1) Θ(deg+ v)

Insert edge Θ(1) Θ(1)

Delete edge Θ(1)

Θ(deg+ v)

247

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2) Θ(n)

(u, v) ∈ E ? Θ(1) Θ(deg+ v)

Insert edge Θ(1) Θ(1)

Delete edge Θ(1) Θ(deg+ v)

247

Depth First Search

248

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

ffdd eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

a

a bb cc

ffdd eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa

bb cc

ffdd eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa b

b cc

ffdd eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb

cc

ffdd eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb c

c

ffdd eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

ffdd eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

f

fdd eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

ff

dd eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

ffd

d eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

ffdd

eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

ffdd e

eee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

ffdd ee

ee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

ffdd eee

e

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

ffdd eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

ffdd eeee

g

g hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

ffdd eeee

gg

hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

ffdd eeee

gg h

h i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

ffdd eeee

gg hh

i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

ffdd eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

ffdd eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Colors

Conceptual coloring of nodes
white: node has not been discovered yet.
grey: node has been discovered and is marked for traversal / being
processed.
black: node was discovered and entirely processed.

250

Algorithm Depth First visit DFS-Visit(G, v)

Input: graph G = (V,E), Knoten v.

v.color ← grey
foreach w ∈ N+(v) do

if w.color = white then
DFS-Visit(G,w)

v.color ← black

Depth First Search starting from node v. Running time (without recursion):
Θ(deg+ v)

251

Algorithm Depth First visit DFS-Visit(G)

Input: graph G = (V,E)

foreach v ∈ V do
v.color ← white

foreach v ∈ V do
if v.color = white then

DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
Θ(|V |+∑

v∈V (deg+(v) + 1)) = Θ(|V |+ |E|).

252

Interpretation of the Colors

When traversing the graph, a tree (or Forest) is built. When nodes are
discovered there are three cases

White node: new tree edge
Grey node: Zyklus (“back-egde”)
Black node: forward- / cross edge

253

Breadth First Search

254

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa bb

dd eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

a

aaa bb

dd eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aa

aa bb

dd eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaa

a bb

dd eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa

bb

dd eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa b

b

dd eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa bb

dd eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa bb

d

d eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa bb

dd

eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa bb

dd e

ee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa bb

dd ee

e

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa bb

dd eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa bb

dd eee

c

c

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa bb

dd eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa bb

dd eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa bb

dd eee

cc

f

g

g hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa bb

dd eee

cc

f

gg

hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa bb

dd eee

cc

f

gg h

h i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa bb

dd eee

cc

f

gg hh

i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa bb

dd eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

(Iterative) BFS-Visit(G, v)
Input: graph G = (V,E)

Queue Q← ∅
v.color ← grey
enqueue(Q, v)
while Q 6= ∅ do

w ← dequeue(Q)
foreach c ∈ N+(w) do

if c.color = white then
c.color ← grey
enqueue(Q, c)

w.color ← black

Algorithm requires extra space of O(|V |).
256

Main program BFS-Visit(G)

Input: graph G = (V,E)

foreach v ∈ V do
v.color ← white

foreach v ∈ V do
if v.color = white then

BFS-Visit(G,v)

Breadth First Search for all nodes of a graph. Running time: Θ(|V |+ |E|).

257

Topological Sorting

Evaluation Order?
258

Topological Sorting

Topological Sorting of an acyclic directed graph G = (V,E):
Bijective mapping

ord : V → {1, . . . , |V |}

such that
ord(v) < ord(w) ∀ (v, w) ∈ E.

Identify i with Element vi := ord1(i). Topological sorting =̂ 〈v1, . . . , v|V |〉.

259

(Counter-)Examples

1

2

3 4

5

Cyclic graph: cannot be sorted topo-
logically.

Unterhose Hose

Socken Schuhe

Unterhemd Pullover

Mantel

Uhr

A possible toplogical sorting of the graph:
Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe

260

Observation

Theorem 7
A directed graph G = (V,E) permits a topological sorting if and only if
it is acyclic.

Proof “⇒”: If G contains a cycle it cannot permit a topological sorting,
because in a cycle 〈vi1 , . . . , vim〉 it would hold that vi1 < · · · < vim < vi1 .

261

Observation

Theorem 7
A directed graph G = (V,E) permits a topological sorting if and only if
it is acyclic.

Proof “⇒”: If G contains a cycle it cannot permit a topological sorting,
because in a cycle 〈vi1 , . . . , vim〉 it would hold that vi1 < · · · < vim < vi1 .

261

Inductive Proof Opposite Direction

Base case (n = 1): Graph with a single node without loop can be sorted
topologically, setord(v1) = 1.

Hypothesis: Graph with n nodes can be sorted topologically
Step (n→ n+ 1):

1. G contains a node vq with in-degree deg−(vq) = 0. Otherwise iteratively
follow edges backwards – after at most n+ 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2. Graph without node vq and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(vi)← ord(vi) + 1 for
all i 6= q and set ord(vq)← 1.

262

Inductive Proof Opposite Direction

Base case (n = 1): Graph with a single node without loop can be sorted
topologically, setord(v1) = 1.
Hypothesis: Graph with n nodes can be sorted topologically

Step (n→ n+ 1):

1. G contains a node vq with in-degree deg−(vq) = 0. Otherwise iteratively
follow edges backwards – after at most n+ 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2. Graph without node vq and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(vi)← ord(vi) + 1 for
all i 6= q and set ord(vq)← 1.

262

Inductive Proof Opposite Direction

Base case (n = 1): Graph with a single node without loop can be sorted
topologically, setord(v1) = 1.
Hypothesis: Graph with n nodes can be sorted topologically
Step (n→ n+ 1):

1. G contains a node vq with in-degree deg−(vq) = 0. Otherwise iteratively
follow edges backwards – after at most n+ 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2. Graph without node vq and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(vi)← ord(vi) + 1 for
all i 6= q and set ord(vq)← 1.

262

Inductive Proof Opposite Direction

Base case (n = 1): Graph with a single node without loop can be sorted
topologically, setord(v1) = 1.
Hypothesis: Graph with n nodes can be sorted topologically
Step (n→ n+ 1):

1. G contains a node vq with in-degree deg−(vq) = 0. Otherwise iteratively
follow edges backwards – after at most n+ 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2. Graph without node vq and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(vi)← ord(vi) + 1 for
all i 6= q and set ord(vq)← 1.

262

Inductive Proof Opposite Direction

Base case (n = 1): Graph with a single node without loop can be sorted
topologically, setord(v1) = 1.
Hypothesis: Graph with n nodes can be sorted topologically
Step (n→ n+ 1):

1. G contains a node vq with in-degree deg−(vq) = 0. Otherwise iteratively
follow edges backwards – after at most n+ 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2. Graph without node vq and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(vi)← ord(vi) + 1 for
all i 6= q and set ord(vq)← 1.

262

Preliminary Sketch of an Algorithm

Graph G = (V,E). d← 1
1. Traverse backwards starting from any node until a node vq with

in-degree 0 is found.

2. If no node with in-degree 0 found after n stepsm, then the graph has a
cycle.

3. Set ord(vq)← d.
4. Remove vq and his edges from G.
5. If V 6= ∅ , then d← d+ 1, go to step 1.

Worst case runtime:

Θ(|V |2).

263

Preliminary Sketch of an Algorithm

Graph G = (V,E). d← 1
1. Traverse backwards starting from any node until a node vq with

in-degree 0 is found.
2. If no node with in-degree 0 found after n stepsm, then the graph has a

cycle.

3. Set ord(vq)← d.
4. Remove vq and his edges from G.
5. If V 6= ∅ , then d← d+ 1, go to step 1.

Worst case runtime:

Θ(|V |2).

263

Preliminary Sketch of an Algorithm

Graph G = (V,E). d← 1
1. Traverse backwards starting from any node until a node vq with

in-degree 0 is found.
2. If no node with in-degree 0 found after n stepsm, then the graph has a

cycle.
3. Set ord(vq)← d.

4. Remove vq and his edges from G.
5. If V 6= ∅ , then d← d+ 1, go to step 1.

Worst case runtime:

Θ(|V |2).

263

Preliminary Sketch of an Algorithm

Graph G = (V,E). d← 1
1. Traverse backwards starting from any node until a node vq with

in-degree 0 is found.
2. If no node with in-degree 0 found after n stepsm, then the graph has a

cycle.
3. Set ord(vq)← d.
4. Remove vq and his edges from G.

5. If V 6= ∅ , then d← d+ 1, go to step 1.

Worst case runtime:

Θ(|V |2).

263

Preliminary Sketch of an Algorithm

Graph G = (V,E). d← 1
1. Traverse backwards starting from any node until a node vq with

in-degree 0 is found.
2. If no node with in-degree 0 found after n stepsm, then the graph has a

cycle.
3. Set ord(vq)← d.
4. Remove vq and his edges from G.
5. If V 6= ∅ , then d← d+ 1, go to step 1.

Worst case runtime:

Θ(|V |2).

263

Preliminary Sketch of an Algorithm

Graph G = (V,E). d← 1
1. Traverse backwards starting from any node until a node vq with

in-degree 0 is found.
2. If no node with in-degree 0 found after n stepsm, then the graph has a

cycle.
3. Set ord(vq)← d.
4. Remove vq and his edges from G.
5. If V 6= ∅ , then d← d+ 1, go to step 1.

Worst case runtime:

Θ(|V |2).

263

Preliminary Sketch of an Algorithm

Graph G = (V,E). d← 1
1. Traverse backwards starting from any node until a node vq with

in-degree 0 is found.
2. If no node with in-degree 0 found after n stepsm, then the graph has a

cycle.
3. Set ord(vq)← d.
4. Remove vq and his edges from G.
5. If V 6= ∅ , then d← d+ 1, go to step 1.

Worst case runtime: Θ(|V |2).

263

Improvement

Idea?

Compute the in-degree of all nodes in advance and traverse the nodes
with in-degree 0 while correcting the in-degrees of following nodes.

264

Improvement

Idea?
Compute the in-degree of all nodes in advance and traverse the nodes
with in-degree 0 while correcting the in-degrees of following nodes.

264

Algorithm Topological-Sort(G)
Input: graph G = (V,E).
Output: Topological sorting ord

Stack S ← ∅
foreach v ∈ V do A[v]← 0
foreach (v, w) ∈ E do A[w]← A[w] + 1 // Compute in-degrees
foreach v ∈ V with A[v] = 0 do push(S, v) // Memorize nodes with in-degree 0
i← 1
while S 6= ∅ do

v ← pop(S); ord[v]← i; i← i+ 1 // Choose node with in-degree 0
foreach (v, w) ∈ E do // Decrease in-degree of successors

A[w]← A[w]− 1
if A[w] = 0 then push(S,w)

if i = |V |+ 1 then return ord else return “Cycle Detected”

265

Algorithm Correctness

Theorem 8

LetG = (V,E) be a directed acyclic graph. Algorithm TopologicalSort(G)
computes a topological sorting ord for G with runtime Θ(|V |+ |E|).

Proof: follows from previous theorem:

1. Decreasing the in-degree corresponds with node removal.

2. In the algorithm it holds for each node v with A[v] = 0 that either the node
has in-degree 0 or that previously all predecessors have been assigned a
value ord[u]← i and thus ord[v] > ord[u] for all predecessors u of v. Nodes
are put to the stack only once.

3. Runtime: inspection of the algorithm (with some arguments like with graph
traversal)

266

Algorithm Correctness

Theorem 8

LetG = (V,E) be a directed acyclic graph. Algorithm TopologicalSort(G)
computes a topological sorting ord for G with runtime Θ(|V |+ |E|).

Proof: follows from previous theorem:

1. Decreasing the in-degree corresponds with node removal.

2. In the algorithm it holds for each node v with A[v] = 0 that either the node
has in-degree 0 or that previously all predecessors have been assigned a
value ord[u]← i and thus ord[v] > ord[u] for all predecessors u of v. Nodes
are put to the stack only once.

3. Runtime: inspection of the algorithm (with some arguments like with graph
traversal)

266

Algorithm Correctness

Theorem 9

LetG = (V,E) be a directed graph containing a cycle. Algorithm TopologicalSort(G)
terminates within Θ(|V |+ |E|) steps and detects a cycle.

Proof: let 〈vi1 , . . . , vik〉 be a cycle in G. In each step of the algorithm remains
A[vij] ≥ 1 for all j = 1, . . . , k. Thus k nodes are never pushed on the stack und
therefore at the end it holds that i ≤ V + 1− k.
The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already Θ(|V |+ |E|).

267

Algorithm Correctness

Theorem 9

LetG = (V,E) be a directed graph containing a cycle. Algorithm TopologicalSort(G)
terminates within Θ(|V |+ |E|) steps and detects a cycle.

Proof: let 〈vi1 , . . . , vik〉 be a cycle in G. In each step of the algorithm remains
A[vij] ≥ 1 for all j = 1, . . . , k. Thus k nodes are never pushed on the stack und
therefore at the end it holds that i ≤ V + 1− k.
The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already Θ(|V |+ |E|).

267

13. Shortest Paths

Motivation, Universal Algorithm, Dijkstra’s algorithm on distance graphs,
[Ottman/Widmayer, Kap. 9.5.1-9.5.2 Cormen et al, Kap. 24.1-24.3]

268

River Crossing (Missionaries and Cannibals)

Problem: Three cannibals and three missionaries are standing at a river
bank. The available boat can carry two people. At no time may at any place
(banks or boat) be more cannibals than missionaries. How can the
missionaries and cannibals cross the river as fast as possible? 16

K K K

M M M
B

16There are slight variations of this problem. It is equivalent to the jealous husbands
problem.

269

Problem as Graph

Enumerate permitted configurations as nodes and connect them with an
edge, when a crossing is allowed. The problem then becomes a shortest
path problem.
Example

links rechts
Missionare 3 0
Kannibalen 3 0
Boot x

links rechts
Missionare 2 1
Kannibalen 2 1
Boot x

Überfahrt möglich

6 Personen am linken Ufer 4 Personen am linken Ufer

270

The whole problem as a graph

3 0
3 0
x

3 0
2 1
x

3 0
1 2
x

3 0
0 3
x

2 1
2 1
x

1 2
1 2
x

0 3
1 2
x

0 3
2 1
x

0 3
3 0
x

6 5 4 3 4 2 1 2 3

3 0
2 1

x

3 0
1 2

x

3 0
0 3

x

2 1
2 1

x

1 2
1 2

x

0 3
1 2

x

0 3
2 1

x

0 3
3 0

x

0 3
0 3

x

5 4 3 4 2 1 2 3 0

271

Another Example: Mystic Square

Want to find the fastest solution for

2 4 6
7 5 3
1 8

1 2 3
4 5 6
7 8

272

Problem as Graph
1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

1 2 3
4 5 6

7 8

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

1 2 3
4 8 5
7 6

1 2 3
4 5

7 8 6

2 4 6
7 5 3
1 8

273

Route Finding

Provided cities A - Z and Distances between cities.

A

B

C

D

E

F

G

H

I Z

3

1

6

4

1

3

5

7

1

4 5

1

4

1

7 4

3
8

5

10

5

What is the shortest path from A to Z?
274

Simplest Case
Constant edge weight 1 (wlog)
Solution: Breadth First Search

S

t

275

Weighted Graphs
Given: G = (V,E, c), c : E → R, s, t ∈ V .
Wanted: Length (weight) of a shortest path from s to t.
Path: p = 〈s = v0, v1, . . . , vk = t〉, (vi, vi+1) ∈ E (0 ≤ i < k)
Weight: c(p) := ∑k−1

i=0 c((vi, vi+1)).

S

t2 1

3

2

1

Path with weight 9

276

Shortest Paths

Notation: we write
u

p
 v oder p : u v

and mean a path p from u to v
Notation: δ(u, v) = weight of a shortest path from u to v:

δ(u, v) =

∞ no path from u to v
min{c(p) : u p

 v} otherwise

277

Observations (1)

It may happen that a shortest paths does not exist: negative cycles can
occur.

s u

v

w

t
1

1

−1

−1

1

1

278

Observations (2)

There can be exponentially many paths.

s

t
(at least 2|V |/2 paths from s to t)

⇒ To try all paths is too ine�cient

279

Observations (3)

Triangle Inequality
For all s, u, v ∈ V :

δ(s, v) ≤ δ(s, u) + δ(u, v)

s

u

v

A shortest path from s to v cannot be longer than a shortest path from s to v that
has to include u

280

Observations (4)

Optimal Substructure
Sub-paths of shortest paths are shortest paths. Let p = 〈v0, . . . , vk〉 be a
shortest path from v0 to vk. Then each of the sub-paths pij = 〈vi, . . . , vj〉
(0 ≤ i < j ≤ k) is a shortest path from vi to vj .

u x y v
p p

q

p

If not, then one of the sub-paths could be shortened which immediately leads to
a contradiction.

281

Observations (5)

Shortest paths do not contain cycles

1. Shortest path contains a negative cycle: there is no shortest path,
contradiction

2. Path contains a positive cycle: removing the cycle from the path will reduce
the weight. Contradiction.

3. Path contains a cycle with weight 0: removing the cycle from the path will not
change the weight. Remove the cycle (convention).

282

Ingredients of an Algorithm

Wanted: shortest paths from a starting node s.
Weight of the shortest path found so far

ds : V → R

At the beginning: ds[v] =∞ for all v ∈ V .
Goal: ds[v] = δ(s, v) for all v ∈ V .
Predecessor of a node

πs : V → V

Initially πs[v] undefined for each node v ∈ V

283

General Algorithm

1. Initialise ds and πs: ds[v] =∞, πs[v] = null for each v ∈ V
2. Set ds[s]← 0
3. Choose an edge (u, v) ∈ E

Relaxiere (u, v):
if ds[v] > d[u] + c(u, v) then

ds[v]← ds[u] + c(u, v)
πs[v]← u

4. Repeat 3 until nothing can be relaxed any more.
(until ds[v] ≤ ds[u] + c(u, v) ∀(u, v) ∈ E)

284

It is Safe to Relax

At any time in the algorithm above it holds

ds[v] ≥ δ(s, v) ∀v ∈ V

In the relaxation step:

δ(s, v) ≤ δ(s, u) + δ(u, v) [Triangle Inequality].
δ(s, u) ≤ ds[u] [Induction Hypothesis].
δ(u, v) ≤ c(u, v) [Minimality of δ]

⇒ ds[u] + c(u, v) ≥ δ(s, v)

⇒ min{ds[v], ds[u] + c(u, v)} ≥ δ(s, v)

285

It is Safe to Relax

At any time in the algorithm above it holds

ds[v] ≥ δ(s, v) ∀v ∈ V

In the relaxation step:

δ(s, v) ≤ δ(s, u) + δ(u, v) [Triangle Inequality].
δ(s, u) ≤ ds[u] [Induction Hypothesis].
δ(u, v) ≤ c(u, v) [Minimality of δ]

⇒ ds[u] + c(u, v) ≥ δ(s, v)

⇒ min{ds[v], ds[u] + c(u, v)} ≥ δ(s, v)

285

Central Question

How / in which order should edges be chosen in above algorithm?

286

Special Case: Directed Acyclic Graph (DAG)

DAG⇒ topological sorting returns optimal visiting order

s

v1

v2

v3

v4

v5

v6

v7

v8

2

4

−3

1

−1

2

−2

2

−2

2

3

−1

0

2

4

−1

−2

0

−4

3

−6

Top. Sort: ⇒ Order s, v1, v2, v3, v4, v6, v5, v8, v7.
287

Special Case: Directed Acyclic Graph (DAG)

DAG⇒ topological sorting returns optimal visiting order

s

v1

v2

v3

v4

v5

v6

v7

v8

2

4

−3

1

−1

2

−2

2

−2

2

3

−1
0

2

4

−1

−2

0

−4

3

−6

Top. Sort: ⇒ Order s, v1, v2, v3, v4, v6, v5, v8, v7.
287

Assumption (preliminary)

s

a

b

c

d

e

2

3

2

6

1

3

1

1

All weights of G are positive.

288

Observation (Dijkstra)

s

u

v

w

4

7

2

t
0

4

7

2

upper bounds

Smallest upper bound
global minimum!
cannot be relaxed further

289

Basic Idea

Set V of nodes is partitioned into
the set M of nodes for which a shortest
path from s is already known,
the set R = ⋃

v∈M N+(v) \M of nodes
where a shortest path is not yet known
but that are accessible directly from M ,
the set U = V \ (M ∪R) of nodes that
have not yet been considered.

s

2

2

5

3

5

2

1

2

290

Induction

Induction over |M |: choose nodes from R
with smallest upper bound. Add r to M and
update R and U accordingly.

Correctness: if within the “wavefront” a node
with minimal weight w has been found then
no path over later nodes (providing weight ≥
d) can provide any improvement.

s

2

2

5

3

5

2

1

2

291

Algorithm Dijkstra(G, s)
Input: Positively weighted Graph G = (V,E, c), starting point s ∈ V ,
Output: Minimal weights d of the shortest paths and corresponding predecessor

node for each node.

foreach u ∈ V do
ds[u]←∞; πs[u]← null

ds[s]← 0; R← {s}
while R 6= ∅ do

u← ExtractMin(R)
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
R← R ∪ {v}

292

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

293

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
s

M = {s}

R = {}

U = {a, b, c, d, e}

293

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

M = {s}

R = {a, b}

U = {c, d, e}

293

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

a c
8

M = {s, a}

R = {b, c}

U = {d, e}

293

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

a c
8

b d
4

M = {s, a, b}

R = {c, d}

U = {e}

293

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

a c
8

b d
4

d

e
5

7

M = {s, a, b, d}

R = {c, e}

U = {}

293

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

a c
8

b d
4

d

e
5

7

e

6

M = {s, a, b, d, e}

R = {c}

U = {}

293

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

a c
8

b d
4

d

e
5

7

e

6
c

M = {s, a, b, d, e, c}

R = {}

U = {}

293

Implementation: Data Structure for R?
Required operations:

Insert (add to R)
ExtractMin (over R) and DecreaseKey (Update in R)
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
if v ∈ R then

DecreaseKey(R, v) // Update of a d(v) in the heap of R
else

R← R ∪ {v} // Update of d(v) in the heap of R

MinHeap!

294

Implementation: Data Structure for R?
Required operations:

Insert (add to R)
ExtractMin (over R) and DecreaseKey (Update in R)
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
if v ∈ R then

DecreaseKey(R, v) // Update of a d(v) in the heap of R
else

R← R ∪ {v} // Update of d(v) in the heap of R

MinHeap!
294

DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap?

alternative (a): Store position at the nodes
alternative (b): Hashtable of the nodes
alterantive (c): re-insert node after successful relax operation and mark it
"deleted" once extracted (Lazy Deletion).17

17For lazy deletion a pair of egde (or target node) and distance is required.
295

DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap?

alternative (a): Store position at the nodes

alternative (b): Hashtable of the nodes
alterantive (c): re-insert node after successful relax operation and mark it
"deleted" once extracted (Lazy Deletion).17

17For lazy deletion a pair of egde (or target node) and distance is required.
295

DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap?

alternative (a): Store position at the nodes
alternative (b): Hashtable of the nodes

alterantive (c): re-insert node after successful relax operation and mark it
"deleted" once extracted (Lazy Deletion).17

17For lazy deletion a pair of egde (or target node) and distance is required.
295

DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap?

alternative (a): Store position at the nodes
alternative (b): Hashtable of the nodes
alterantive (c): re-insert node after successful relax operation and mark it
"deleted" once extracted (Lazy Deletion).17

17For lazy deletion a pair of egde (or target node) and distance is required.
295

Runtime

|V |× ExtractMin: O(|V | log |V |)
|E|× Insert or DecreaseKey: O(|E| log |V |)
1× Init: O(|V |)
Overal: O(|E| log |V |).

296

14. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT Union-Find,
Algorithm Jarnik, Prim, Dijkstra [Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen
et al, Kap. 23, 19]

297

Problem

Given: Undirected, weighted, connected graph G = (V,E, c).
Wanted: Minimum Spanning Tree T = (V,E ′): connected, cycle-free
subgraph E ′ ⊂ E, such that ∑e∈E′ c(e) minimal.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

298

Application Examples

Network-Design: find the cheapest / shortest network that connects all
nodes.
Approximation of a solution of the travelling salesman problem: find a
round-trip, as short as possible, that visits each node once. 18

18The best known algorithm to solve the TS problem exactly has exponential running
time.

299

Greedy Procedure

Greedy algorithms compute the solution stepwise choosing locally
optimal solutions.
Most problems cannot be solved with a greedy algorithm.
The Minimum Spanning Tree problem can be solved with a greedy
strategy.

300

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

301

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

301

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

301

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

301

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

301

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

301

Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V,E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |E| do

if (V,A ∪ {ek}) acyclic then
A← A ∪ {ek}

return (V,A, c)

302

Implementation Issues

Consider a set of sets i ≡ Ai ⊂ V . To identify cuts and cycles: membership
of the both ends of an edge to sets?

303

Implementation Issues

General problem: partition (set of subsets) .e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}
Required: Abstract data type “Union-Find” with the following operations

Make-Set(i): create a new set represented by i.
Find(e): name of the set i that contains e .
Union(i, j): union of the sets with names i and j.

304

Union-Find Algorithm MST-Kruskal(G)
Input: Weighted Graph G = (V,E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |V | do

MakeSet(k)

for k = 1 to m do
(u, v)← ek
if Find(u) 6= Find(v) then

Union(Find(u),Find(v))
A← A ∪ ek

else // conceptual: R← R ∪ ek
return (V,A, c)

305

Implementation Union-Find

Idea: tree for each subset in the partition,e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}

1

2 3

9

6

7 4

5

8

10

roots = names (representatives) of the sets,
trees = elements of the sets

306

Implementation Union-Find

1

2 3

9

6

7 4

5

8

10

Representation as array:

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

307

Implementation Union-Find

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

Make-Set(i) p[i]← i; return i

Find(i) while (p[i] 6= i) do i← p[i]
return i

Union(i, j) 19 p[j]← i;

19i and j need to be names (roots) of the sets. Otherwise use Union(Find(i),Find(j))
308

Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8, 7), Union(7, 6), Union(6, 5), ...

Index 1 2 3 4 5 6 7 8 ..
Parent 1 1 2 3 4 5 6 7 ..

Worst-case running time of Find in Θ(n).

309

Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional size
information (array) g

Make-Set(i) p[i]← i; g[i]← 1; return i

Union(i, j)
if g[j] > g[i] then swap(i, j)
p[j]← i
if g[i] = g[j] then g[i]← g[i] + 1

⇒ Tree depth (and worst-case running time for Find) in Θ(log n)

310

Further improvement

Link all nodes to the root when Find is called.
Find(i):
j ← i
while (p[i] 6= i) do i← p[i]
while (j 6= i) do

t← j
j ← p[j]
p[t]← i

return i

Cost: amortised nearly constant (inverse of the Ackermann-function).20

20We do not go into details here.
311

Running time of Kruskal’s Algorithm

Sorting of the edges: Θ(|E| log |E|) = Θ(|E| log |V |). 21

Initialisation of the Union-Find data structure Θ(|V |)
|E|× Union(Find(x),Find(y)): O(|E| log |E|) = O(|E| log |V |).

Overal Θ(|E| log |V |).

21because G is connected: |V | ≤ |E| ≤ |V |2
312

Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some v ∈ V and grow the spanning tree from here by the
acceptance rule.

A← ∅
S ← {v0}
for i← 1 to |V | do

Choose cheapest (u, v) mit u ∈ S, v 6∈ S
A← A ∪ {(u, v)}
S ← S ∪ {v} // (Coloring)

S

V \ S

Remark: a union-Find data structure is not required. It su�ces to color
nodes when they are added to S.

313

Running time

Trivially O(|V | · |E|).
Improvement (like with Dijkstra’s ShortestPath)

With Min-Heap: costs

Initialization (node coloring) O(|V |)
|V |× ExtractMin = O(|V | log |V |),
|E|× Insert or DecreaseKey: O(|E| log |V |),

O(|E| · log |V |)

314

15. Flow in Networks

Flow Network, Maximal Flow, Cut, Rest Network, Max-flow Min-cut Theorem,
Ford-Fulkerson Method, Edmonds-Karp Algorithm, Maximal Bipartite
Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1], [Cormen et al, Kap. 26.1-26.3]

315

Motivation

Modelling flow of fluents, components on conveyors, current in
electrical networks or information flow in communication networks.
Connectivity of Communication Networks, Bipartite Matching,
Circulation, Scheduling, Image Segmentation, Baseball Eliminination...

316

Flow Network

Flow network G = (V,E, c): directed graph
with capacities
Antiparallel edges forbidden:
(u, v) ∈ E ⇒ (v, u) 6∈ E.
Model a missing edge (u, v) by c(u, v) = 0.
Source s and sink t: special nodes. Every
node v is on a path between s and t :
s v t

s

v1

v2

v3

v4

t

16

13

12

14

20

4

9
4 7

317

Flow

A Flow f : V × V → R fulfills the following
conditions:

Bounded Capacity:
For all u, v ∈ V : f(u, v) ≤ c(u, v).
Skew Symmetry:
For all u, v ∈ V : f(u, v) = −f(v, u).
Conservation of flow:
For all u ∈ V \ {s, t}:∑

v∈V
f(u, v) = 0.

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

Value of the flow:
|f | =

∑
v∈V f(s, v).

Here |f | = 18.

318

How large can a flow possibly be?

Limiting factors: cuts
cut separating s from t: Partition of V into S and T with s ∈ S, t ∈ T .
Capacity of a cut: c(S, T) = ∑

v∈S,v′∈T c(v, v′)
Minimal cut: cut with minimal capacity.
Flow over the cut: f(S, T) = ∑

v∈S,v′∈T f(v, v′)

319

Implicit Summation

Notation: Let U,U ′ ⊆ V

f(U,U ′) :=
∑
u∈U
u′∈U ′

f(u, u′), f(u, U ′) := f({u}, U ′)

Thus
|f | = f(s, V)
f(U,U) = 0
f(U,U ′) = −f(U ′, U)
f(X ∪ Y, Z) = f(X,Z) + f(Y, Z), if X ∩ Y = ∅.
f(R, V) = 0 if R ∩ {s, t} = ∅. [flow conversation!]

320

How large can a flow possibly be?
For each flow and each cut it holds that f(S, T) = |f |:

f(S, T) = f(S, V)− f(S, S)︸ ︷︷ ︸
0

= f(S, V)

= f(s, V) + f(S − {s}︸ ︷︷ ︸
63t, 63s

, V) = |f |.

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

321

Maximal Flow ?
In particular, for each cut (S, T) of V .

|f | ≤
∑

v∈S,v′∈T
c(v, v′) = c(S, T)

Will discover that equality holds for minS,T c(S, T).

s

v1

v2

v3

v4

t

16

13

12

14

20

4

9
4 7

c = 23

322

Maximal Flow ?

Naive Procedure

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

s

v1

v2

v3

v4

t

16/8

13/11

12/12

14/11

20/15

4/4

9/4
4/4 7/7

s

v1

v2

v3

v4

t

16/8

13/13

12/12

14/11

20/17

4/4

9/2
4/4 7/7 s

v1

v2

v3

v4

t

16/10

13/13

12/12

14/11

20/19

4/4

9/0
4/2 7/7

Conclusion: greedy increase of flow does not solve the problem.

323

Maximal Flow ?

Naive Procedure

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6 s

v1

v2

v3

v4

t

16/8

13/11

12/12

14/11

20/15

4/4

9/4
4/4 7/7

s

v1

v2

v3

v4

t

16/8

13/13

12/12

14/11

20/17

4/4

9/2
4/4 7/7 s

v1

v2

v3

v4

t

16/10

13/13

12/12

14/11

20/19

4/4

9/0
4/2 7/7

Conclusion: greedy increase of flow does not solve the problem.

323

Maximal Flow ?

Naive Procedure

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6 s

v1

v2

v3

v4

t

16/8

13/11

12/12

14/11

20/15

4/4

9/4
4/4 7/7

s

v1

v2

v3

v4

t

16/8

13/13

12/12

14/11

20/17

4/4

9/2
4/4 7/7

s

v1

v2

v3

v4

t

16/10

13/13

12/12

14/11

20/19

4/4

9/0
4/2 7/7

Conclusion: greedy increase of flow does not solve the problem.

323

Maximal Flow ?

Naive Procedure

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6 s

v1

v2

v3

v4

t

16/8

13/11

12/12

14/11

20/15

4/4

9/4
4/4 7/7

s

v1

v2

v3

v4

t

16/8

13/13

12/12

14/11

20/17

4/4

9/2
4/4 7/7 s

v1

v2

v3

v4

t

16/10

13/13

12/12

14/11

20/19

4/4

9/0
4/2 7/7

Conclusion: greedy increase of flow does not solve the problem.

323

Maximal Flow ?

Naive Procedure

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6 s

v1

v2

v3

v4

t

16/8

13/11

12/12

14/11

20/15

4/4

9/4
4/4 7/7

s

v1

v2

v3

v4

t

16/8

13/13

12/12

14/11

20/17

4/4

9/2
4/4 7/7 s

v1

v2

v3

v4

t

16/10

13/13

12/12

14/11

20/19

4/4

9/0
4/2 7/7

Conclusion: greedy increase of flow does not solve the problem.

323

The Method of Ford-Fulkerson

Start with f(u, v) = 0 for all u, v ∈ V
Determine rest network* Gf and expansion path in Gf

Increase flow via expansion path*
Repeat until no expansion path available.

Gf := (V,Ef , cf)
cf (u, v) := c(u, v)− f(u, v) ∀u, v ∈ V

Ef := {(u, v) ∈ V × V |cf (u, v) > 0}

*Will now be explained

324

Increase of flow, negative!

Let some flow f in the network be given.
Finding:

Increase of the flow along some edge possible, when flow can be
increased along the edge,i.e. if f(u, v) < c(u, v).
Rest capacity cf (u, v) = c(u, v)− f(u, v) > 0.
Increase of flow against the direction of the edge possible, if flow can
be reduced along the edge, i.e. if f(u, v) > 0.
Rest capacity cf (v, u) = f(u, v) > 0.

325

Rest Network

Rest network Gf provided by the edges with positive rest capacity:

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

s

v1

v2

v3

v4

t

8

8

3

10

12

4

10

6

14

4

5

4
4 1 6

Rest networks provide the same kind of properties as flow networks with the exception of
permitting antiparallel capacity-edges

326

Observation

Theorem 10
Let G = (V,E, c) be a flow network with source s and sink t and f a flow
in G. Let Gf be the corresponding rest networks and let f ′ be a flow in
Gf . Then f ⊕ f ′ with

(f ⊕ f ′)(u, v) = f(u, v) + f ′(u, v)

defines a flow in G with value |f |+ |f ′|.

327

Proof
f ⊕ f ′ defines a flow in G:

capacity limit

(f ⊕ f ′)(u, v) = f(u, v) + f ′(u, v)︸ ︷︷ ︸
≤c(u,v)−f(u,v)

≤ c(u, v)

skew symmetry

(f ⊕ f ′)(u, v) = −f(v, u) +−f ′(v, u) = −(f ⊕ f ′)(v, u)

flow conservation u ∈ V − {s, t}:∑
v∈V

(f ⊕ f ′)(u, v) =
∑
v∈V

f(u, v) +
∑
v∈V

f ′(u, v) = 0

328

Proof

Value of f ⊕ f ′

|f ⊕ f ′| = (f ⊕ f ′)(s, V)
=
∑
u∈V

f(s, u) + f ′(s, u)

= f(s, V) + f ′(s, V)
= |f |+ |f ′|

�

329

Augmenting Paths

expansion path p: simple path from s to t in the rest network Gf .
Rest capacity cf (p) = min{cf (u, v) : (u, v) edge in p}

330

Flow in Gf

Theorem 11
The mapping fp : V × V → R,

fp(u, v) =


cf (p) if (u, v) edge in p
−cf (p) if (v, u) edge in p
0 otherwise

provides a flow in Gf with value |fp| = cf (p) > 0.

fp is a flow (easy to show). there is one and only one u ∈ V with (s, u) ∈ p.
Thus |fp| =

∑
v∈V fp(s, v) = fp(s, u) = cf (p).

331

Consequence

Strategy for an algorithm:
With an expansion path p in Gf the flow f ⊕ fp defines a new flow with
value |f ⊕ fp| = |f |+ |fp| > |f |.

332

Max-Flow Min-Cut Theorem

Theorem 12
Let f be a flow in a flow network G = (V,E, c) with source s and sink t.
The following statementsa are equivalent:

1. f is a maximal flow in G
2. The rest network Gf does not provide any expansion paths
3. It holds that |f | = c(S, T) for a cut (S, T) of G.

333

Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V,E, c)
Output: Maximal flow f .

for (u, v) ∈ E do
f(u, v)← 0

while Exists path p : s t in rest network Gf do
cf (p)← min{cf (u, v) : (u, v) ∈ p}
foreach (u, v) ∈ p do

f(u, v)← f(u, v) + cf (p)
f(v, u)← f(v, u)− cf (p)

334

Practical Consideration

In an implementation of the Ford-Fulkerson algorithm the negative flow
egdes are usually not stored because their value always equals the
negated value of the antiparallel edge.
f(u, v)← f(u, v) + cf (p)
f(v, u)← f(v, u)− cf (p)

is then transformed to
if (u, v) ∈ E then

f(u, v)← f(u, v) + cf (p)
else

f(v, u)← f(v, u)− cf (p)

335

Analysis

The Ford-Fulkerson algorithm does not
necessarily have to converge for irrational
capacities. For integers or rational numbers it
terminates.
For an integer flow, the algorithms requires
maximally |fmax| iterations of the while loop
(because the flow increases minimally by 1).
Search a single increasing path (e.g. with DFS or
BFS) O(|E|) Therefore O(fmax|E|).

s

u

v

t

1000

1000

1

1000

1000

With an unlucky
choice the algorithm
may require up to
2000 iterations here.

336

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in Gf the
expansion path of shortest possible length (e.g. with BFS)

337

Edmonds-Karp Algorithm

Theorem 13
When the Edmonds-Karp algorithm is applied to some integer valued
flow network G = (V,E) with source s and sink t then the number of
flow increases applied by the algorithm is in O(|V | · |E|).
⇒ Overal asymptotic runtime: O(|V | · |E|2)

[Without proof]

338

Application: maximal bipartite matching

Given: bipartite undirected graph G = (V,E).
Matching M : M ⊆ E such that |{m ∈M : v ∈ m}| ≤ 1 for all v ∈ V .
Maximal Matching M : Matching M , such that |M | ≥ |M ′| for each matching
M ′.

339

Corresponding flow network
Construct a flow network that corresponds to the partition L,R of a
bipartite graph with source s and sink t, with directed edges from s to L,
from L to R and from R to t. Each edge has capacity 1.

L R

s t

L R

340

16. Dynamic Programming

Memoization, Optimal Substructure, Overlapping Sub-Problems,
Dependencies, General Procedure. Examples: Rod Cutting, Rabbits
[Ottman/Widmayer, Kap. 7.1, 7.4, Cormen et al, Kap. 15]

341

Fibonacci Numbers

(again)

Fn :=

n if n < 2
Fn−1 + Fn−2 if n ≥ 2.

Analysis: why ist the recursive algorithm so slow?

342

Algorithm FibonacciRecursive(n)

Input: n ≥ 0
Output: n-th Fibonacci number

if n < 2 then
f ← n

else
f ← FibonacciRecursive(n− 1) + FibonacciRecursive(n− 2)

return f

343

Analysis

T (n): Number executed operations.
n = 0, 1: T (n) = Θ(1)

n ≥ 2: T (n) = T (n− 2) + T (n− 1) + c.

T (n) = T (n− 2) + T (n− 1) + c ≥ 2T (n− 2) + c ≥ 2n/2c′ = (
√

2)nc′

Algorithm is exponential in n.

344

Analysis

T (n): Number executed operations.
n = 0, 1: T (n) = Θ(1)
n ≥ 2: T (n) = T (n− 2) + T (n− 1) + c.

T (n) = T (n− 2) + T (n− 1) + c ≥ 2T (n− 2) + c ≥ 2n/2c′ = (
√

2)nc′

Algorithm is exponential in n.

344

Analysis

T (n): Number executed operations.
n = 0, 1: T (n) = Θ(1)
n ≥ 2: T (n) = T (n− 2) + T (n− 1) + c.

T (n) = T (n− 2) + T (n− 1) + c ≥ 2T (n− 2) + c ≥ 2n/2c′ = (
√

2)nc′

Algorithm is exponential in n.

344

Analysis

T (n): Number executed operations.
n = 0, 1: T (n) = Θ(1)
n ≥ 2: T (n) = T (n− 2) + T (n− 1) + c.

T (n) = T (n− 2) + T (n− 1) + c ≥ 2T (n− 2) + c ≥ 2n/2c′ = (
√

2)nc′

Algorithm is exponential in n.

344

Reason (visual)

F47

F46

F45

F44 F43

F44

F43 F42

F45

F44

F43 F42

F43

F42 F41

Nodes with same values are evaluated (too) often.

345

Memoization

Memoization (sic) saving intermediate results.
Before a subproblem is solved, the existence of the corresponding
intermediate result is checked.
If an intermediate result exists then it is used.
Otherwise the algorithm is executed and the result is saved accordingly.

346

Memoization with Fibonacci

F47

F46

F45

F44 F43

F44

F45

Rechteckige Knoten wurden bereits ausgewertet.

347

Algorithm FibonacciMemoization(n)

Input: n ≥ 0
Output: n-th Fibonacci number

if n ≤ 2 then
f ← 1

else if ∃memo[n] then
f ← memo[n]

else
f ← FibonacciMemoization(n− 1) + FibonacciMemoization(n− 2)
memo[n]← f

return f

348

Analysis

Computational complexity:

T (n) = T (n− 1) + c = ... = O(n).

because after the call to f(n− 1), f(n− 2) has already been computed.
A di�erent argument: f(n) is computed exactly once recursively for each n.
Runtime costs: n calls with Θ(1) costs per call n · c ∈ Θ(n). The recursion
vanishes from the running time computation.
Algorithm requires Θ(n) memory.22

22But the naive recursive algorithm also requires Θ(n) memory implicitly.
349

Looking closer ...

... the algorithm computes the values of F1, F2, F3,. . . in the top-down
approach of the recursion.
Can write the algorithm bottom-up. This is characteristic for dynamic
programming.

350

Algorithm FibonacciBottomUp(n)

Input: n ≥ 0
Output: n-th Fibonacci number

F [1]← 1
F [2]← 1
for i← 3, . . . , n do

F [i]← F [i− 1] + F [i− 2]
return F [n]

351

Dynamic Programming: Idea

Divide a complex problem into a reasonable number of sub-problems
The solution of the sub-problems will be used to solve the more
complex problem
Identical problems will be computed only once

352

Dynamic Programming Consequence

Identical problems will be computed only once
⇒ Results are saved

We trade spee against

memory consumption

353

Dynamic Programming: Description

1. Use a DP-table with information to the subproblems.
Dimension of the entries? Semantics of the entries?

2. Computation of the base cases
Which entries do not depend on others?

3. Determine computation order.
In which order can the entries be computed such that dependencies are
fulfilled?

4. Read-out the solution
How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per
entry.

354

Dynamic Programming: Description

1. Use a DP-table with information to the subproblems.
Dimension of the entries? Semantics of the entries?

2. Computation of the base cases
Which entries do not depend on others?

3. Determine computation order.
In which order can the entries be computed such that dependencies are
fulfilled?

4. Read-out the solution
How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per
entry.

354

Dynamic Programming: Description

1. Use a DP-table with information to the subproblems.
Dimension of the entries? Semantics of the entries?

2. Computation of the base cases
Which entries do not depend on others?

3. Determine computation order.
In which order can the entries be computed such that dependencies are
fulfilled?

4. Read-out the solution
How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per
entry.

354

Dynamic Programming: Description

1. Use a DP-table with information to the subproblems.
Dimension of the entries? Semantics of the entries?

2. Computation of the base cases
Which entries do not depend on others?

3. Determine computation order.
In which order can the entries be computed such that dependencies are
fulfilled?

4. Read-out the solution
How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per
entry.

354

Dynamic Programming: Description

1. Use a DP-table with information to the subproblems.
Dimension of the entries? Semantics of the entries?

2. Computation of the base cases
Which entries do not depend on others?

3. Determine computation order.
In which order can the entries be computed such that dependencies are
fulfilled?

4. Read-out the solution
How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per
entry.

354

Dynamic Programing: Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2.
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3.
Computation order?

Fi with increasing i.

4.
Reconstruction of a solution?

Fn ist die n-te Fibonacci-Zahl.

355

Dynamic Programing: Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2.
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3.
Computation order?

Fi with increasing i.

4.
Reconstruction of a solution?

Fn ist die n-te Fibonacci-Zahl.

355

Dynamic Programing: Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2.
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3.
Computation order?

Fi with increasing i.

4.
Reconstruction of a solution?

Fn ist die n-te Fibonacci-Zahl.

355

Dynamic Programing: Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2.
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3.
Computation order?

Fi with increasing i.

4.
Reconstruction of a solution?

Fn ist die n-te Fibonacci-Zahl.

355

Dynamic Programing: Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2.
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3.
Computation order?

Fi with increasing i.

4.
Reconstruction of a solution?

Fn ist die n-te Fibonacci-Zahl.

355

Dynamic Programing: Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2.
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3.
Computation order?

Fi with increasing i.

4.
Reconstruction of a solution?

Fn ist die n-te Fibonacci-Zahl.

355

Dynamic Programing: Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2.
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3.
Computation order?

Fi with increasing i.

4.
Reconstruction of a solution?

Fn ist die n-te Fibonacci-Zahl.

355

Dynamic Programing: Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2.
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3.
Computation order?

Fi with increasing i.

4.
Reconstruction of a solution?

Fn ist die n-te Fibonacci-Zahl.

355

Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by
utilizing the solutions of sub-problems. The problem provides optimal
substructure.
Divide-And-Conquer algorithms (such as Mergesort): sub-problems are
independent; their solutions are required only once in the algorithm.
DP: sub-problems are dependent. The problem is said to have
overlapping sub-problems that are required multiple-times in the
algorithm.
In order to avoid redundant computations, results are tabulated. For
sub-problems there must not be any circular dependencies.

356

Rod Cutting

Rods (metal sticks) are cut and sold.
Rods of length n ∈ N are available. A cut does not provide any costs.
For each length l ∈ N, l ≤ n known is the value vl ∈ R+

Goal: cut the rods such (into k ∈ N pieces) that

k∑
i=1

vli is maximized subject to
k∑
i=1

li = n.

357

Rod Cutting: Example

Possibilities to cut a rod of length 4 (without permutations)

Length 0 1 2 3 4
Price 0 2 3 8 9 ⇒ Best cut: 3 + 1 with value 10.

358

Wie findet man den DP Algorithms

0. Exact formulation of the wanted solution
1. Define sub-problems (and compute the cardinality)
2. Guess / Enumerate (and determine the running time for guessing)
3. Recursion: relate sub-problems
4. Memoize / Tabularize. Determine the dependencies of the

sub-problems
5. Solve the problem

Running time = #sub-problems × time/sub-problem

359

Structure of the problem

0. Wanted: rn = maximal value of rod (cut or as a whole) with length n.
1. sub-problems: maximal value rk for each 0 ≤ k < n

2. Guess the length of the first piece
3. Recursion

rk = max{vi + rk−i : 0 < i ≤ k}, k > 0
r0 = 0

4. Dependency: rk depends (only) on values vi, 1 ≤ i ≤ k and the
optimal cuts ri, i < k

5. Solution in rn

360

Algorithm RodCut(v,n)

Input: n ≥ 0, Prices v
Output: best value

q ← 0
if n > 0 then

for i← 1, . . . , n do
q ← max{q, vi + RodCut(v, n− i)};

return q

Running time T (n) =
∑n−1
i=0 T (i) + c ⇒23 T (n) ∈ Θ(2n)

23T (n) = T (n− 1) +
∑n−2

i=0 T (i) + c = T (n− 1) + (T (n− 1)− c) + c = 2T (n− 1) (n > 0)
361

Recursion Tree

5

4

3

2

1

1

2

1

1

3

2

1

1

2

1

1

362

Algorithm RodCutMemoized(m, v, n)

Input: n ≥ 0, Prices v, Memoization Table m
Output: best value

q ← 0
if n > 0 then

if ∃ m[n] then
q ← m[n]

else
for i← 1, . . . , n do

q ← max{q, vi + RodCutMemoized(m, v, n− i)};
m[n]← q

return q

Running time ∑n
i=1 i = Θ(n2)

363

Subproblem-Graph

Describes the mutual dependencies of the subproblems

4 3 2 1 0

and must not contain cycles

364

Construction of the Optimal Cut

During the (recursive) computation of the optimal solution for each
k ≤ n the recursive algorithm determines the optimal length of the first
rod
Store the lenght of the first rod in a separate table of length n

365

Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2.
Which entries do not depend on other entries?

Value r0 is 0

3.
Computation order?

ri, i = 1, . . . , n

.

4.
Reconstruction of a solution?

rn is the best value for the rod of length n.

366

Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2.
Which entries do not depend on other entries?

Value r0 is 0

3.
Computation order?

ri, i = 1, . . . , n

.

4.
Reconstruction of a solution?

rn is the best value for the rod of length n.

366

Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2.
Which entries do not depend on other entries?

Value r0 is 0

3.
Computation order?

ri, i = 1, . . . , n

.

4.
Reconstruction of a solution?

rn is the best value for the rod of length n.

366

Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2.
Which entries do not depend on other entries?

Value r0 is 0

3.
Computation order?

ri, i = 1, . . . , n

.

4.
Reconstruction of a solution?

rn is the best value for the rod of length n.

366

Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2.
Which entries do not depend on other entries?

Value r0 is 0

3.
Computation order?

ri, i = 1, . . . , n

.

4.
Reconstruction of a solution?

rn is the best value for the rod of length n.

366

Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2.
Which entries do not depend on other entries?

Value r0 is 0

3.
Computation order?

ri, i = 1, . . . , n.

4.
Reconstruction of a solution?

rn is the best value for the rod of length n.

366

Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2.
Which entries do not depend on other entries?

Value r0 is 0

3.
Computation order?

ri, i = 1, . . . , n.

4.
Reconstruction of a solution?

rn is the best value for the rod of length n.

366

Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2.
Which entries do not depend on other entries?

Value r0 is 0

3.
Computation order?

ri, i = 1, . . . , n.

4.
Reconstruction of a solution?

rn is the best value for the rod of length n.

366

Rabbit!

A rabbit sits on cite (1, 1) of an
n× n grid. It can only move to
east or south. On each path-
way there is a number of car-
rots. How many carrots does
the rabbit collect maximally?

1, 1

1, 2

1, 3

1, 4

2, 1

2, 2

2, 3

2, 4

3, 1

3, 2

3, 3

3, 4

4, 1

4, 2

4, 3

4, 4

0

4

1

4

1

2

1

1

3

3

3

3

0

0

4

1

1

1

1

0

2

4

2

2

367

Rabbit!

Number of possible paths?
Choice of n− 1 ways to south out of 2n− 2
ways overal.

(
2n− 2
n− 1

)
∈ Ω(2n)

⇒ No chance for a naive algorithm The path 100011
(1:to south, 0: to east)

368

Rabbit!

Number of possible paths?
Choice of n− 1 ways to south out of 2n− 2
ways overal.

(
2n− 2
n− 1

)
∈ Ω(2n)

⇒ No chance for a naive algorithm The path 100011
(1:to south, 0: to east)

368

Recursion

Wanted: T0,0 = maximal number carrots from (0, 0) to (n, n).
Let w(i,j)−(i′,j′) number of carrots on egde from (i, j) to (i′, j′).
Recursion (maximal number of carrots from (i, j) to (n, n)

Tij =


max{w(i,j)−(i,j+1) + Ti,j+1, w(i,j)−(i+1,j) + Ti+1,j}, i < n, j < n

w(i,j)−(i,j+1) + Ti,j+1, i = n, j < n

w(i,j)−(i+1,j) + Ti+1,j, i < n, j = n

0 i = j = n

369

Graph of Subproblem Dependencies

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

370

Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

Table T with size n × n. Entry at i, j provides the maximal number of
carrots from (i, j) to (n, n).

2.
Which entries do not depend on other entries?

Value Tn,n is 0

3.
Computation order?

Ti,j with i = n ↘ 1 and for each i: j = n ↘ 1, (or vice-versa: j = n ↘ 1
and for each j: i = n↘ 1)

.

4.
Reconstruction of a solution?

T1,1 provides the maximal number of carrots.

371

Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

Table T with size n × n. Entry at i, j provides the maximal number of
carrots from (i, j) to (n, n).

2.
Which entries do not depend on other entries?

Value Tn,n is 0

3.
Computation order?

Ti,j with i = n ↘ 1 and for each i: j = n ↘ 1, (or vice-versa: j = n ↘ 1
and for each j: i = n↘ 1)

.

4.
Reconstruction of a solution?

T1,1 provides the maximal number of carrots.

371

Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

Table T with size n × n. Entry at i, j provides the maximal number of
carrots from (i, j) to (n, n).

2.
Which entries do not depend on other entries?

Value Tn,n is 0

3.
Computation order?

Ti,j with i = n ↘ 1 and for each i: j = n ↘ 1, (or vice-versa: j = n ↘ 1
and for each j: i = n↘ 1)

.

4.
Reconstruction of a solution?

T1,1 provides the maximal number of carrots.

371

Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

Table T with size n × n. Entry at i, j provides the maximal number of
carrots from (i, j) to (n, n).

2.
Which entries do not depend on other entries?

Value Tn,n is 0

3.
Computation order?

Ti,j with i = n ↘ 1 and for each i: j = n ↘ 1, (or vice-versa: j = n ↘ 1
and for each j: i = n↘ 1)

.

4.
Reconstruction of a solution?

T1,1 provides the maximal number of carrots.

371

Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

Table T with size n × n. Entry at i, j provides the maximal number of
carrots from (i, j) to (n, n).

2.
Which entries do not depend on other entries?

Value Tn,n is 0

3.
Computation order?

Ti,j with i = n ↘ 1 and for each i: j = n ↘ 1, (or vice-versa: j = n ↘ 1
and for each j: i = n↘ 1)

.

4.
Reconstruction of a solution?

T1,1 provides the maximal number of carrots.

371

Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

Table T with size n × n. Entry at i, j provides the maximal number of
carrots from (i, j) to (n, n).

2.
Which entries do not depend on other entries?

Value Tn,n is 0

3.
Computation order?

Ti,j with i = n ↘ 1 and for each i: j = n ↘ 1, (or vice-versa: j = n ↘ 1
and for each j: i = n↘ 1).

4.
Reconstruction of a solution?

T1,1 provides the maximal number of carrots.

371

Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

Table T with size n × n. Entry at i, j provides the maximal number of
carrots from (i, j) to (n, n).

2.
Which entries do not depend on other entries?

Value Tn,n is 0

3.
Computation order?

Ti,j with i = n ↘ 1 and for each i: j = n ↘ 1, (or vice-versa: j = n ↘ 1
and for each j: i = n↘ 1).

4.
Reconstruction of a solution?

T1,1 provides the maximal number of carrots.

371

Bottom-up Description with the example

1.
Dimension of the table? Semantics of the entries?

Table T with size n × n. Entry at i, j provides the maximal number of
carrots from (i, j) to (n, n).

2.
Which entries do not depend on other entries?

Value Tn,n is 0

3.
Computation order?

Ti,j with i = n ↘ 1 and for each i: j = n ↘ 1, (or vice-versa: j = n ↘ 1
and for each j: i = n↘ 1).

4.
Reconstruction of a solution?

T1,1 provides the maximal number of carrots. 371

17. Dynamic Programming II

Editing Distance, Bellman-Ford Algorithm
[Cormen et al, Kap. 24.1]]

372

Minimal Editing Distance

Editing distance of two sequences An = (a1, . . . , an), Bm = (b1, . . . , bm).
Editing operations:

Insertion of a character
Deletion of a character
Replacement of a character

Question: how many editing operations at least required in order to
transform string A into string B.

TIGER ZIGER ZIEGER ZIEGE

373

Minimal Editing Distance

Wanted: cheapest character-wise transformation An → Bm with costs

operation Levenshtein LCS24 general
Insert c 1 1 ins(c)
Delete c 1 1 del(c)
Replace c→ c′ 1(c 6= c′) ∞ · 1(c 6= c′) repl(c, c′)

Beispiel
T I G E R
Z I E G E

T I _ G E R
Z I E G E _

T→Z +E -R
Z→T -E +R

24Longest common subsequence – A special case of an editing problem
374

DP

0. E(n,m) = mimimum number edit operations (ED cost) a1...n → b1...m

1. Subproblems E(i, j) = ED von a1...i. b1...j . #SP = n ·m
2. Guess CostsΘ(1)

a1..i → a1...i−1 (delete)
a1..i → a1...ibj (insert)
a1..i → a1...i−1bj (replace)

3. Rekursion

E(i, j) = min


del(ai) + E(i− 1, j),
ins(bj) + E(i, j − 1),
repl(ai, bj) + E(i− 1, j − 1)

375

DP

4. Dependencies

⇒ Computation from left top to bottom right. Row- or column-wise.
5. Solution in E(n,m)

376

Example (Levenshtein Distance)

E[i, j]← min
{
E[i− 1, j] + 1, E[i, j − 1] + 1, E[i− 1, j − 1] + 1(ai 6= bj)

}
∅ Z I E G E

∅ 0 1 2 3 4 5
T 1 1 2 3 4 5
I 2 2 1 2 3 4
G 3 3 2 2 2 3
E 4 4 3 2 3 2
R 5 5 4 3 3 3

Editing steps: from bottom right to top left, following the recursion.
Bottom-Up description of the algorithm: exercise

377

Bottom-Up DP algorithm ED

1.
Dimension of the table? Semantics?

Table E[0, . . . ,m][0, . . . , n]. E[i, j]: minimal edit distance of the strings
(a1, . . . , ai) and (b1, . . . , bj)

2.

Computation of an entry

E[0, i]← i ∀0 ≤ i ≤ m, E[j, 0]← i ∀0 ≤ j ≤ n. Computation of E[i, j] oth-
erwise viaE[i, j] = min{del(ai)+E(i−1, j), ins(bj)+E(i, j−1), repl(ai, bj)+
E(i− 1, j − 1)}

378

Bottom-Up DP algorithm ED

1.
Dimension of the table? Semantics?

Table E[0, . . . ,m][0, . . . , n]. E[i, j]: minimal edit distance of the strings
(a1, . . . , ai) and (b1, . . . , bj)

2.

Computation of an entry

E[0, i]← i ∀0 ≤ i ≤ m, E[j, 0]← i ∀0 ≤ j ≤ n. Computation of E[i, j] oth-
erwise viaE[i, j] = min{del(ai)+E(i−1, j), ins(bj)+E(i, j−1), repl(ai, bj)+
E(i− 1, j − 1)}

378

Bottom-Up DP algorithm ED

1.
Dimension of the table? Semantics?

Table E[0, . . . ,m][0, . . . , n]. E[i, j]: minimal edit distance of the strings
(a1, . . . , ai) and (b1, . . . , bj)

2.

Computation of an entry

E[0, i]← i ∀0 ≤ i ≤ m, E[j, 0]← i ∀0 ≤ j ≤ n. Computation of E[i, j] oth-
erwise viaE[i, j] = min{del(ai)+E(i−1, j), ins(bj)+E(i, j−1), repl(ai, bj)+
E(i− 1, j − 1)}

378

Bottom-Up DP algorithm ED

1.
Dimension of the table? Semantics?

Table E[0, . . . ,m][0, . . . , n]. E[i, j]: minimal edit distance of the strings
(a1, . . . , ai) and (b1, . . . , bj)

2.

Computation of an entry

E[0, i]← i ∀0 ≤ i ≤ m, E[j, 0]← i ∀0 ≤ j ≤ n. Computation of E[i, j] oth-
erwise viaE[i, j] = min{del(ai)+E(i−1, j), ins(bj)+E(i, j−1), repl(ai, bj)+
E(i− 1, j − 1)}

378

Bottom-Up DP algorithm ED

3.
Computation order

Rows increasing and within columns increasing (or the other way round).

4.

Reconstruction of a solution?

Start with j = m, i = n. If E[i, j] = repl(ai, bj) +E(i− 1, j− 1) then output
ai → bj and continue with (j, i) ← (j − 1, i − 1); otherwise, if E[i, j] =
del(ai) +E(i− 1, j) output del(ai) and continue with j ← j− 1 otherwise,
if E[i, j] = ins(bj) + E(i, j − 1), continue with i ← i − 1 . Terminate for
i = 0 and j = 0.

379

Bottom-Up DP algorithm ED

3.
Computation order

Rows increasing and within columns increasing (or the other way round).

4.

Reconstruction of a solution?

Start with j = m, i = n. If E[i, j] = repl(ai, bj) +E(i− 1, j− 1) then output
ai → bj and continue with (j, i) ← (j − 1, i − 1); otherwise, if E[i, j] =
del(ai) +E(i− 1, j) output del(ai) and continue with j ← j− 1 otherwise,
if E[i, j] = ins(bj) + E(i, j − 1), continue with i ← i − 1 . Terminate for
i = 0 and j = 0.

379

Bottom-Up DP algorithm ED

3.
Computation order

Rows increasing and within columns increasing (or the other way round).

4.

Reconstruction of a solution?

Start with j = m, i = n. If E[i, j] = repl(ai, bj) +E(i− 1, j− 1) then output
ai → bj and continue with (j, i) ← (j − 1, i − 1); otherwise, if E[i, j] =
del(ai) +E(i− 1, j) output del(ai) and continue with j ← j− 1 otherwise,
if E[i, j] = ins(bj) + E(i, j − 1), continue with i ← i − 1 . Terminate for
i = 0 and j = 0.

379

Bottom-Up DP algorithm ED

3.
Computation order

Rows increasing and within columns increasing (or the other way round).

4.

Reconstruction of a solution?

Start with j = m, i = n. If E[i, j] = repl(ai, bj) +E(i− 1, j− 1) then output
ai → bj and continue with (j, i) ← (j − 1, i − 1); otherwise, if E[i, j] =
del(ai) +E(i− 1, j) output del(ai) and continue with j ← j− 1 otherwise,
if E[i, j] = ins(bj) + E(i, j − 1), continue with i ← i − 1 . Terminate for
i = 0 and j = 0.

379

Analysis ED

Number table entries: (m+ 1) · (n+ 1).
Constant number of assignments and comparisons each. Number steps:
O(mn)
Determination of solition: decrease i or j. Maximally O(n+m) steps.

Runtime overal:
O(mn).

380

DNA - Comparison (Star Trek)

381

DNA - Comparison

DNA consists of sequences of four di�erent nucleotides Adenine
Guanine Thymine Cytosine
DNA sequences (genes) thus can be described with strings of A, G, T and
C.
Possible comparison of two genes: determine the longest common
subsequence

The longest common subsequence problem is a special case of the
minimal edit distance problem.

382

Reminder: Shortest Path Algorithm

1. Initialise ds and πs: ds[v] =∞, πs[v] = null for each v ∈ V
2. Set ds[s]← 0
3. Choose an edge (u, v) ∈ E

Relaxiere (u, v):
if ds[v] > d[u] + c(u, v) then

ds[v]← ds[u] + c(u, v)
πs[v]← u

4. Repeat 3 until nothing can be relaxed any more.
(until ds[v] ≤ ds[u] + c(u, v) ∀(u, v) ∈ E)

390

Dynamic Programming Approach (Bellman)

Induction over number of edges ds[i, v]: Shortest path from s to v via
maximally i edges.

ds[i, v] = min{ds[i− 1, v], min
(u,v)∈E

(ds[i− 1, u] + c(u, v))

ds[0, s] = 0, ds[0, v] =∞ ∀v 6= s.

391

Dynamic Programming Approach (Bellman)

s · · · v · · · w
0 0 ∞ ∞ ∞ ∞
1 0 ∞ 7 ∞ −2
...

n− 1 0 · · · · · · · · · · · ·

s

u

v

w

4

7

−2

Algorithm: Iterate over last row until the relaxation steps do not provide
any further changes, maximally n− 1 iterations. If still changes, then there
is no shortest path.

392

Algorithm Bellman-Ford(G, s)
Input: Graph G = (V,E, c), starting point s ∈ V
Output: If return value true, minimal weights d for all shortest paths from s,

otherwise no shortest path.

foreach u ∈ V do
ds[u]←∞; πs[u]← null

ds[s]← 0;
for i← 1 to |V | do

f ← false
foreach (u, v) ∈ E do

f ← f ∨ Relax(u, v)
if f = false then return true

return false;

Runtime O(|E| · |V |).
393

	Prüfung
	Introduction
	From Java to Python
	Advanced Python Concepts
	Algorithmen und Datenstrukturen
	Efficiency of algorithms
	Efficiency of Algorithms
	Function growth

	Searching
	Sorting
	Mergesort
	Quicksort

	Binary Search Trees
	Trees
	Search Trees
	Key Insertion
	Remove Key
	Tree Traversal

	Heaps
	AVL Trees
	Balance
	AVL Condition
	Fibonacci Numbers
	AVL Insert

	Hashing
	Hash Functions and Tables
	Chaining Collisions
	Hash Functions
	Dynamic Table Size
	Open Addressing

	Graphs
	graphs
	Representation of graphs
	Graph Traversal
	Topological Sorting

	Shortest Paths
	Motivation
	Constant Edge Weights
	General Algorithm
	Dijkstra's Algorithm

	Minimum Spanning Trees
	Motivation
	Greedy
	Algorithm Kruskal
	Abstract Data Type Union-Find
	Algorithm Jarnik, Prim, Dijkstra

	Flow in Networks
	Flow Network
	Cut
	Maximal Flow
	Rest Network
	Max-Flow Min-Cut
	 Ford-Fulkerson Algorithm
	Edmonds-Karp Algorithm
	Maximales Bipartites Matching

	Dynamic Programming
	Fibonacci Numbers
	Memoization
	General Procedure
	Rod Cutting
	Rabbit (Longest Path)

	Dynamic Programming II
	Editing Distance
	Longest Common Subsequence
	Bellman-Ford Algorithm

