Felix Friedrich & Hermann Lehner

Computer Science |l
Course at D-BAUG, ETH Zurich

Spring 2020

Welcome!

Course homepage
http://lec.inf.ethz.ch/baug/informatik2

The team:
Lecturers Felix Friedrich
Hermann Lehner
Assistants Prashanth Chandran
Sverrir Thorgeirsson
Vu Nguyen
Jan Osusky
Michael Seeber
Back-office Katja Wolff

http://lec.inf.ethz.ch/baug/informatik2

Exercises

Mon — Tue — Wed —— Thu —— Fri Sat — Sun — Mon — Tue — Wed — Thu —— Fri —— Sat ——
% 0 v I U
submission
issuance preliminary discussion discussion

m Exercises availabe at lectures.

m Preliminary discussion in the following recitation session

m Solution of the exercise until two days before the next recitation session.
m Dicussion of the exercise in the next recitation session.

Exercises

m The solution of the weekly exercises is voluntary but stronly
recommended.

Informatik Il Noten vs [code]expert total score 2018

It is so simple!

For the exercises we use an online development environment that
requires only a browser, internet connection and your ETH login.

If you do not have access to a computer: there are a a lot of computers publicly
accessible at ETH.

Literature

Algorithmen und Datenstrukturen, 7. Ottmann, P Widmayer,
Spektrum-Verlag, 5. Auflage, 2011

Algorithmen - Eine Einfithrung, T. Cormen, C. Leiserson, R. Rivest, C. Stein,
Oldenbourg, 2010

Introduction to Algorithms, 7. Cormen, C. Leiserson, R. Rivest, C. Stein , 3rd
ed., MIT Press, 2009

Algorithmen Kapieren, Aditya Y. Bhargava, MITP, 2019.

Exams

The exam will cover

m Lectures content (lectures, handouts)

m Exercise content (recitation hours, exercise tasks).

Written exam.
We will test your practical skills (algorithmic and programming skills) and
theoretical knowledge (background knowledge, systematics).

Offer

m Doing the weekly exercise series — bonus of maximally 0.25 of a grade
points for the exam.

m The bonus is proportional to the achieved points of specially marked
bonus-task. The full number of points corresponds to a bonus of 0.25 of
a grade point.

m The admission to the specially marked bonus tasks can depend on the
successul completion of other exercise tasks. The achieved grade bonus
expires as soon as the course has been given again.

Offer (concretely)

m 3 bonus exercises in total; 2/3 of the points suffice for the exam bonus
of 0.25 marks

m You can, e.g. fully solve 2 bonus exercises, or solve 3 bonus exercises to
66% each, or ...

m Bonus exercises must be unlocked (— experience points) by
successfully completing the weekly exercises

m |t is again not necessary to solve all weekly exercises completely in
order to unlock a bonus exercise

m Details: exercise sessions, online exercise system (Code Expert)

Academic integrity

Rule: You submit solutions that you have written yourself and that you
have understood.

We check this (partially automatically) and reserve our rights to adopt
disciplinary measures.

Should there be any Problems ...

m with the course content

m definitely attend all recitation sessions
m ask questions there
m and/or contact the assistant

m further problems

m Email to lecturer (Felix Friedrich, Hermann Lehner)

m We are willing to help.

1. Introduction

Objectives of this Course

Goals of the course

m Understand the design and analysis of fundamental algorithms and
data structures.

m Understand how an algorithmic problem is mapped to a sufficiently
efficient computer program.

Contents

~-

Software Engineering

Java To Python Introduction
Python Datastructures

data structures / algorithms

The notion invariant, cost model, Landau notation
algorithms design, induction, divide & conquer
searching and sorting
dictionaries: hashing and search trees, balanced trees
dynamic programming
fundamental graph algorithms
Shortest paths, maximum flow

~

2. From Java to Python

First Python Program, Transfer Java — Python, Dynamic Data Structures in
Python

Learning Objectives

m see a new programming language (Python) and learn how to transfer
from one programming language to another

m learn the most important differences between Java and Python, both
from a syntactical and semantical point of view

m learn about the basic data types of Python (list, set, dict, tuple) and
operations leveraging the use of such data types

m get used to the new programming language and environment (Python)
by re-implementing known algorithms

First Java Program

public class Hello {
public static void main (Stringl[] args) {
System.out.print ("Hello World!");
}
}

First Python Program

print("Hello World!")

Comments

Comments are preceded by a #

prints ’Hello World!’ to the comsole
print("Hello World!")

Formatting Matters: Statements

m Whitespace is relevant

m Each line represents a statement
m So, exactly one Statement per line
m Comments start with #

Example program with two statements:

two print-statements
print ("Hurray, finally ...")
print("... no Semicolons!")

Formatting Matters: Blocks

m Blocks must be indented.

m All indented statements are part of a block. The block ends as soon as

the indentation ends.
m Start of a Block is marked by a colon “:

in Python

while i > O:
x=x+1/1i
i=1i-1

print(x)

”n

// in Java

while (i > 0) {
x=x+1.0/ i;
i=1i-1;

}

System.out.print (x)

20

Literals: Numbers

m integer: 42, -5, Ox1b, 0033, 7729684762313578932578932
Arbitrary precise integer numbers

m float: -0.1, 34.567e-4
Like double in Java, but precision depends on platform (CPU/ operating

system)
m complex: 2 + 3j, (0.21 - 1.2j)
Complex numbers in the form a+bj. Optional round parentheses.

21

Literals: Booleans

B True
B False

22

Literals: Strings

B ’a single quoted string\nand a second line’
B "a doube quoted string\nand a second line"
m Multi-line strings (tripple double quotes):

"""a multiline string
and a second line"""

23

Literals: Sequences

m arrays: There are no primitive arrays in Python

m lists: [17, True, "abc"], []
Mutable ordered sequence of 0 or more Values of arbitrary types.

m tuples: (17, True, "abc"), (42,)
Immutable ordered sequence of 1 or more Values of arbitrary types.

24

Literals: Collections

m dicts: { "a": 42, "b": 27, False: 0 }, {}
Mutable Key-Value store. Keys and values may have arbitrary types.

m sets: {17, True, "abc"}, {42}
Mutable unordered sequence of 0 or more Values of arbitrary types. No
duplicates.

25

Variables

m Variables are automatically created upon the first assignment

m The type of a variable is not checked upon assignment. That is, values of
different types can be assigned to a variable over time.

m Assignment of values with the assignment operator: =
m Assignment to multiple variables with tuples

a = "Ein Text" X, y =4, 5

int # prints: Ein Text RN
pr1n4éa) prints: Bin fex print(x) # prints: 4
a=

int # ints: 5
print(a) # prints: 42 print(y) # prints

26

Variables

m Variables must always be assigned first before it's possible to read their
value

Assume b never got a value assigned:
a=>b

Results in the following error
NameError: name 'b’ is not defined

27

Numeric and Boolean Operators

Numeric operators asin Java: +, -, *, /, %, *x, //

Caution: “ / " always results in a floating-point number

x: Power function, a**b = a’.

//: Integer division, 5//2 results in 2.

Comparison operators as in Java: ==, >=, <=, >, <, I=

Logical Operators: and, or, not

Membership Operator: “ in " Determines if a value is in a list, set or
string.

m |dentity Operator: “ is " Checks if two variables point to the same object.

28

Input/Output

m Reading of inputs using input ()

m A prompt can be provided.

m Output using print(...)

B print accepts one or more arguments and prints them separated with a
space

name = input("What is your name: ")
print("Hello", name)

29

Input/Output

m Input is always read as string

m To read a number, the input must be converted to a number first

m No implicit conversion happens

m Explicit conversion using: int(), float(), complex(), list(), ..

i = int(input("Enter a number: "))
print("The", i,"th power of two is", 2%*i)

30

Conditions

m No parentheses required around the test
m elif to test another case
m Mind the indentation!

a = int(input("Enter a number: "))
if a == 42:
print ("Naturally, the answer")
elif a == 28:
print ("A perfect number, good choice")
else:
print(a, "is just some boring number")

31

While-Loops

The well-known Collaz-Folge

a = int(input("Enter a number: "))
while a != 1:
if a % 2 == 0:
a=a// 2
else:
a=ax*x3d+1
print(a, end=’ ’)

32

For-Loops

m For-Loops work differently than in Java
m Iterates over the elements of the given set

some_list = [14, ’lala’, 22, True, 6]
total = 0;
for item in some_list:
if type(item) == int:
total += item
print("Total of the numbers is", total)

33

For-Loops over a value range

m The function range(start, end, step) creates a list of values, starting
with start until end - exclusive. Stepsize is step.

m Step size is 1 if the third argument is omitted.

the following loop prints "1 2 3 4"
for i in range(1,5):
print(i, end=’ ’)

the following loop prints "10 8 6 4 2"
for i in range(10, 0, -2):
print(i, end=’ ’)

34

Methods

m The Cookie Calculator revisited

def readInt(prompt, atleast = 1):

"""Prompt for a number greater O (or min, if specified)"""
number = 0;
while number < atleast:

number = int(input(prompt))

if (number < atleast):

print("Too small, pick a number larger than", atleast)

return number

kids = readInt("Kids: ")

cookies = readInt("Cookies: ", atleast=kids)
print("Each Kid gets", cookies // kids, "cookies.")
print ("Papa gets", cookies % kids, "cookies.")

35

Lists: Basic Operations

m Element-Access (0-based): a[2] points to the third element.

m Negative indices count from the last element!

a=1[3,7, 4]
print(al[-1]) # prints ’4’

m Add value to the tail: a.append (12)
m Test if an elementis in a collection:

if 12 in a:
print(’12 is in the list, we just added it before’)

m Anzahl Elemente in einer Collection: 1en(a)

36

Lists: Slicing

m Slicing: address partition: a[start:end]
m a and/or b are positive or negative indices.
B end is not inclusive

a=1[1,2, 3, 4, 5, 6, 7, 8, 9]
print(a[2:4]) # [3, 4]
print(a[3:-3]) # [4, 5, 6]
print(a[-3:-1]) # [7, 8]
print(al[5:]) # [6, 7, 8, 9]
print(al:3]) # [1, 2, 3]

Dictionaries

Dictionaries are very important primitive data structures in Python

m Easy and efficient possibility to name and group several fields of data
m Build hierarchical data structures by nesting

m Accessing elements using [] Operator

record = { ’Firstname’: ’Hermann’, ’Lastname’:’Lehner’,
’Salary’: 420000, ’Mac User’: True }
record[’Salary’] = 450000
if record[’Mac User’]:
print(’... one more thing!’)

38

Dynamic Data Structures with Dicts

tree = {
’key’: 8,
left’ @ {

8
’key’: 4, ’left’ : Nome, ’right’: None ///// \\\\\
4 13

1,

‘right’: { // \\
’key’: 13, 10 19
’left’ @ {

’key’: 10, ’left’ : None, ’right’: None
1,
‘right’: {

’key’: 19, ’left’ : Nome, ’right’: None
}

39

Dynamic Data Structures with Dicts

m Working with Dicts (Examples)

1 = tree[’left’] # assign left subtree to variable 1
1[’key’] = 6 # changes key from 4 to 6

if 1[’left’] is None: # proper way to test against None

print("There is no left child here...")
else:

print("Value of left subtree is", 1[’left’][’key’]

40

Dynamic Data Structures with Classes

class Node:
def __init__(self, k, 1=None, r=None):
self .key, self.left, self.right =k, 1, r

4/////63\\\\\13

16// \\H9

create the tree depicted on the right
rightSubtree = Node(13, 1=Node(10), r=Node(19))
tree = Node(8, 1=Node(4), r=rightSubtree)

an example query
print(tree.right.right.key) # prints: 19

4

Modules

Python has a vast amount of libraries in form of modules that can be
Imported.

m Importaing a whole module:

import math from math import *
x = math.sqrt(4) x = sqrt(4)

m Importaing parts of a module:

from datetime import date
t = date.today()

42

3. Advanced Python Concepts

Built-in Functions, Conditional Expressions, List and Dict Comprehension,
File 10, Exception-Handling

43

Built-In Functions: Enumerate with Indices

Sometimes, one wants to iterate through a list, including the index of each
element. This works with enumerate(...)

data = [’Spam’, ’Eggs’, ’Ham’]

for index, value in enumerate(data):
print(index, ":", value)

Output:
0 : Spam
1 : Eggs
2 : Ham

Built-In Functions: Combining lists

There is a simple possibility to combine lists element-wise (like a zipper!):

zip(...)
places = [’Zurich’, ’Basel’, ’Bern’]

plz = [8000, 4000, 3000, 1]

list(zip(places, plz)
[(’Zurich’, 8000), (’Basel’, 4000), (’Bern’, 3000)]

dict(zip(places, plz)
{’Zurich’: 8000, ’Basel’: 4000, ’Bern’: 3000}

45

Conditional Expressions

In Python, the value of an expression can depend on a condition (as part
of the expression!)

Example: Collaz Sequence

while a != 1:
a=a// 2if a % 2 == 0 else a * 3 +1

Example: Text formatting

print(’I see’, n, ’mouse’ if n ==1 else ’mice’)

46

List Comprehension

m Python provides a convenient way of creating lists declaratively
m Similar technique to ‘map’ and ‘filter’ in functional languages

Example: Read-in a sequence of numbers

line = input(’Enter some numbers: ’)
s_list = line.split()
n_list = [int(x) for x in s_list 1]

The same combined in one expression

n_list = [int(x) for x in input(’Enter some numbers: ’).split() 1]

47

List Comprehension

Example: Eliminate whitespace in front and at the back

line = [’> some eggs °’, ’ slice of ham ’, ’ a lot of spam ’]
cleaned = [item.strip() for item in line]

cleaned == [’some eggs’, ’slice of ham’, ’a lot of spam’]

48

Dict Comprehension

m Like with lists, but with key/value pairs
Example: extract data from a dict
data = {
’Spam’ : { ’Amount’ : 12, ’Price’: 0.45 },
’Eggs’ : { ’Price’: 0.8 },
’Ham’ : { ’Amount’: 5, ’Price’: 1.20 }

total_prices = { item : record[’Amount’] * record[’Price’]
for item, record in data.items()
if ’Amount’ in record }

total_prices == {’Spam’: 5.4, ’Ham’: 6.0}

49

File IO

m Files can be opened with the command open
m To automatically close files afterwards, this must happen in a with block

Example: Read CSV file

import csv

with open(’times.csv’, mode=’r’) as csv_file:
csv_lines = csv.reader(csv_file)

for line in csv_lines:
do something for each record

Writing works similarly. See Python documentation.

50

Exception Handling

Given the following code:
x = int(input (’A number please: ’))
If no number is entered, the program crashes:

Traceback (most recent call last):
File "main.py", line 1, in <module>
x = int(input (’A number please: ’))
ValueError: invalid literal for int() with base 10:

We can catch this error and react accordingly.

)a)

51

Exception Handling

try:
x = int(input(’A number please: ’))
except ValueError:
print (°0h boy, that was no number...’)
x=0
print(’x:’, x)

Output, if spam is entered instead of a number:

Oh boy, that was no number...
x: 0

52

4. Algorithmen und Datenstrukturen

Algorithms and Data Structures, Overview
[Cormen et al, Kap. 1; Ottman/Widmayer, Kap. 11]

53

Algorithm

Algorithm

Well-defined procedure to compute output data from input data

54

Example Problem: Sorting

Input: A sequence of n numbers (comparable objects) (a1, as, ..., ay)
Output: Permutation (a, a5, ..., al,) of the sequence (a;)1<i<n, such that
allgaég...ga%

Possible input

(1,7,3), (15,13,12,—-0.5), (999, 998,997,996, . .., 2,1), (1), () ...

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the problem
instance. Often there are “good” and “bad” instances.

Therefore we consider algorithms sometimes "in the average” and most
often in the "worst case”.

55

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming

evaluation order: Topological Sorting

autocomletion and spell-checking: Dictionaries / Trees
Fast Lookup : Hash-Tables

The travelling Salesman: Dynamic Programming, Minimum Spanning
Tree, Simulated Annealing

56

Characteristics

m Extremely large number of potential solutions
m Practical applicability

57

Data Structures

m A data structure is a particular way of
organizing data in a computer so that
they can be used efficiently (in the
algorithms operating on them).

m Programs = algorithms + data structures.

lucid, systematic,
and penetrating
treatment of basic
and dynamic data
structures, sorting,
recursive algorithms,
language structures,
and compiling

PRENTICE-HALL
SERIES IN
AUTOMATIC
COMPUTATION

NIKLAUS WIRTH

58

Efficiency

m |f computers were infinitely fast and had an infinite amount of memory ...

m ... then we would still need the theory of algorithms (only) for
statements about correctness (and termination).

Reality: resources are bounded and not free:

m Computing time — Efficiency
m Storage space — Efficiency

Actually, this course is nearly only about efficiency.

59

Hard problems.

m NP-complete problems: no known efficient solution (the existence of
such a solution is very improbable - but it has not yet been proven that

there is none!)
m Example: travelling salesman problem

This course is mostly about problems that can be solved efficiently (in
polynomial time).

60

5. Efficiency of algorithms

Efficiency of Algorithms, Random Access Machine Model, Function Growth,
Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 | Ottman/Widmayer, Kap. 11]

61

Efficiency of Algorithms

Goals

m Quantify the runtime behavior of an algorithm independent of the
machine.

m Compare efficiency of algorithms.

m Understand dependece on the input size.

62

Programs and Algorithms

Technology

program

implemented in
~lr

programming language

specified for
~lr

computer

Abstraction

algorithm

specified in
<l

pseudo-code

based on
<l

computation model

63

Technology Model

Random Access Machine (RAM) Model

Execution model: instructions are executed one after the other (on
one processor core).

Memory model: constant access time (big array)

Fundamental operations: computations (+,—,-,...) comparisons,
assignment / copy on machine words (registers), flow control
(jumps)

Unit cost model: fundamental operations provide a cost of 1.

Data types: fundamental types like size-limited integer or floating
point number.

64

For Dynamic Data Strcutures

Pointer Machine Model

Objects bounded in size can be dynamically allocated in constant
time

Fields (with word-size) of the objects can be accessed in constant
time 1.

top Ty @ Tp—1 @----- > T &—— null

65

Asymptotic behavior

An exact running time of an algorithm can normally not be predicted even
for small input data.

m We consider the asymptotic behavior of the algorithm.
m And ignore all constant factors.

An operation with cost 20 is no worse than one with cost 1
Linear growth with gradient 5 is as good as linear growth with gradient

1.

66

Algorithms, Programs and Execution Time

Program: concrete implementation of an algorithm.

Execution time of the program: measurable value on a concrete machine.
Can be bounded from above and below.

Example 1

3GHz computer. Maximal number of operations per cycle (e.g. 8). = lower
bound.

A single operations does never take longer than a day = upper bound.

From the perspective of the asymptotic behavior of the program, the
bounds are unimportant.

67

5.2 Function growth

0O, 6, Q [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 11]

68

Superficially

Use the asymptotic notation to specify the execution time of algorithms.

We write ©(n?) and mean that the algorithm behaves for large n like n*:
when the problem size is doubled, the execution time multiplies by four.

69

More precise: asymptotic upper bound

provided: a function g : N — R.

Definition:
O(g) ={f:N—=R|
dec¢>0,dng € N :
Vn>ng:0< f(n)<c-g(n)}
Notation:

TAusgesprochen: Set of all functions f : N — R that satisfy: there is some (real
valued) ¢ > 0 and some ng € N such that 0 < f(n) < n - g(n) for all n > n,.
70

Graphic

7

Converse: asymptotic lower bound

Given: a function g : N — R.
Definition:

Qg) ={f:N—=R|
J¢>03np €N -
Vn>ng:0<c-gn) < f(n)}

72

no

73

Asymptotic tight bound

Given: function g : N — R.
Definition:

O(g) =

Simple, closed form: exercise.

Q(g) N O(g).

74

Example

g(n)=n

f €06(n?

h(n) = 0.5-n?

75

Notions of Growth

SE SR SE SE CE

—_
~—

loglogn)

,_.
o

0Q
S

~—

5

31\33333

~—

N —

o
~— —~— 0O

o
2

bounded

double logarithmic
logarithmic

like the square root
linear
superlinear / loglinear
quadratic

polynomial
exponential

factorial

array access
interpolated binary sorted sort

binary sorted search

naive prime number test

unsorted naive search

good sorting algorithms

simple sort algorithms

matrix multiply

Travelling Salesman Dynamic Programming
Travelling Salesman naively

76

Small n

77

Larger n

-106

0.8 |
0.6 |
0.4 | 4

0.2

5 10 15 20 logn

“Large” n

0.8 |

0.6 +

0.4

0.2

-10%°

271,

n*n?

20

40

60

80

1000g n

79

Logarithms

1,000 |

800

600 +

400 |

200 +

n

80

Time Consumption

Assumption 1 Operation = 1us.

problem size 1 100 10000 109 10°
logyn lus Tus 13pus 20us 30us

n lus 100us 1/100s 1s 17 minutes
nlogyn 1us 700us 13/100pus 20s 8.5 hours
n? lps 1/100s 1.7 minutes 11.5days 317 centuries
2n 1us 10 centuries ~ 00 ~ 00 ~ 00

81

Useful Tool

Theorem 2

Let f,g : N — R* be two functions, then it holds that

limy, 0o £ = 0 = f € O(g), O(f) € O(9).
lim,, o Z8 = C > 0 (C constant) = f € ©(g).

) o= g€ O(f), Olg) S O().

82

About the Notation

Common casual notation

should be read as f € O(yg).
Clearly it holds that

f1=0(9), f2=0(g) # fL = f2!

n = O(n?),n* = O(n?) but naturally n # n?.

We avoid this notation where it could lead to ambiguities.

83

Reminder: Java Collections / Maps

interface

Collection

e) (e)

Sortedl\/\ap

[HashMap \ TreeMap j

LmkedHashMap
ArrayList HashSet
|<lasse

[TreeSet j[LinkedHashSet}

PriorityQueue

LinkedList

84

ArrayList versus LinkedList

run time measurements for 10000 operations (on [code] expert)

ArrayList
469 s
37900us
1840us
426 us
31lms
38ms
228ms
648 s
58075 us

LinkedList
1787us

761 us
2050us
110600us
301ms
141ms
1080ms
757 us
609us

85

Reminder: Decision

BN alue

ey
M

Order?

sorted i not important

TreeMap | |LinkedHashMap

ArrayList LinkedList | |PriorityQueue TreeSet LinkedHashSet

86

Asymptotic Runtimes (Java)

With our new language (22, O, ©), we can now state the behavior of the
data structures and their algorithms more precisely

Asymptotic running times (Anticipation!)

Data structure || Random Insert Next Insert Search
Access After
Element
ArrayList O(1) (1) A O(1) O(n) O(n)
LinkedList O(n) O(1) o(1) o(1) O(n)
TreeSet - ©(logn) O(logn) - ©(logn)
HashSet - el)pr - - o) P

A = amortized, P=expected, otherwise worst case

87

Asymptotic Runtimes (Python)

Asymptotic running times

Data structure || Random Insert lteration | Insert
Access After
Element
list O(1) O(1) A O(n) O(n)
set - O(1) P O(n) -
dict - (1) P O(n) -
A = amortized, P=expected, otherwise worst case

6. Searching

Linear Search, Binary Search [Ottman/Widmayer, Kap. 3.2, Cormen et al,
Kap. 2: Problems 2.1-3,2.2-3,2.3-5]

89

The Search Problem

Provided
m A set of data sets
telephone book, dictionary, symbol table

m Fach dataset has a key k.

m Keys are comparable: unique answer to the question k; < ko for keys k;,
ks.

Task: find data set by key k.

90

Search in Array

Provided

m Array A with n elements (A[1],...

m Key b

, Aln]).

Wanted: index k, 1 < k < n with A[k] = b or "not found".

22

20

32

10

35

24

42

38

28

41

1

2

3

4

5

6

10

91

Linear Search

Traverse the array from A[1] to An].

m Best case: 1 comparison.
m Worst case: n comparisons.

92

Search in a Sorted Array

Provided

m Sorted array A with n elements (A[1], ..
Al < A[2] < -+ < Aln).

m Key b

., Aln]) with

Wanted: index k, 1 < k < n with A[k] = b or "not found".

10

20

22

24

28

32

35

38

41

42

1

2

3

10

93

divide et impera

Divide and Conquer
Divide the problem into subproblems that contribute to the simplified
computation of the overal problem.
Py —— S5
P, Sy

/ \P21—)521/ \

Problem P Solution

\ /Plz—)Slz\ /

P Sy
\ /
Py — Sn o

Divide and Conquer!

Search b = 23.

10 | 20 | 22 | 24 | 28 | 32 | 35 | 38 | 41 | 42
1 2 3 4 5 6 7 8 9 1
0 | 20 | 22 | 24 | 28 | 32 | 35 | 38 | 41 | 42
1 2 3 45 6 7 8 9 10
10 | 20 | 22| 24 | 28 | 32 | 35 | 38 | 41 | 42
1 2 34 s 6 7 8 9 10
10 | 20 | 22 | & | 28 | 32 | 35 | 38 | 41 | 42
1 2 3 s 6 7 8 9 10
10 | 20 | 22 | 24| 28 | 32 | 35|38 | 41| 42
1 2 E 5 6 7 8 9 10

b <28

b>20

b>22

b< 24

erfolglos

95

Binary Search Algorithm BSearch(A,[,r,b)

Input: Sorted array A of n keys. Key b. Bounds 1 <I,r <n mitl <7 or
l=r+1.
Output: Index m € [l,...,r + 1], such that A[i] < b for all [< i < m and
Ali] > b forallm <i<r.
m e [(1+7)/2)
if [> r then // Unsuccessful search
‘ return |
else if b = A[m| then// found
‘ return m
else if b < A[m] then// element to the left
return BSearch(A,l,m — 1,b)
else // b > A[m]: element to the right
. return BSearch(A, m +1,7,b)

96

Analysis (worst case)

Recurrence (n = 2F)

d fallsn =1,
T(n) =
T(n/2)+c fallsn > 1.

Compute: 2

—T(n) +logan-c=d+c-logyn € O(logn)
n

2Try to find a closed form of T by applying the recurrence repeatedly (starting with

97

Result

Theorem 3

The binary sorted search algorithm requires ©(log n) fundamental oper-
ations.

98

lterative Binary Search Algorithm

Input: Sorted array A of n keys. Key b.

Output: Index of the found element. 0, if unsuccessful.

l+—1,r+n

while | < r do

m <« [(I+7)/2]

if Alm] =10 then
return m

else if A{m| < b then

‘ l+~m+1

else

t r—m-—1

r;turn NotFound;

99

7. Sorting

Simple Sorting, Quicksort, Mergesort

100

Problem

Input: An array A = (A[1], ..., A[n]) with length n.
Output: a permutation A’ of A, that is sorted: A’[i] < A'[j] for all
I<i<j<n

101

Selection Sort

m Selection of the smallest

@ (i=1) element by search in the
. ted part Afi..n] of
g (=2 oA
@ (i =3) m Swap the smallest
. element with the first
@ (i=4) element of the unsorted
6] (i =5) part.
@ (i = 6) m Unsorted part decreases
in size by one element
(6] (i — i+ 1). Repeat until

all is sorted. (i = n)

102

Algorithm: Selection Sort

Input: Array A= (A[1],...,A[n]), n > 0.

Output: Sorted Array A

fori < 1ton—1do

P

for j < i+ 1tondo
if A[j] < A[p] then

L Rk

~ swap(A[i], A[p])

103

Analysis

Number comparisons in worst case: ©(n?).
Number swaps in the worst case: n — 1 = O(n)

104

Insertion Sort

NolicEnNolniin
.61 & & O
A5 B @16 & [
2) e @@ [

)
) = lIterative procedure:
) 1=1.n

m Determine insertion
) position for element 7.
) m Insert element ¢ array

block movement

) potentially required

Insertion Sort

What is the disadvantage of this algorithm compared to sorting by se-
lection?

Many element movements in the worst case.

What is the advantage of this algorithm compared to selection sort?

The search domain (insertion interval) is already sorted. Consequently:
binary search possible.

106

Algorithm: Insertion Sort

Input: Array A = (A[1],...,A[n]), n > 0.
Output: Sorted Array A
for i < 2 ton do
x <+ Ali
p < BinarySearch(A,1,i — 1,x); // Smallest p € [1,4] with Alp| > =
for j < i — 1 downto p do
Al + 1]+ Alj)

i Alp| + x

107

71 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

108

Mergesort

Divide and Conquer!

m Assumption: two halves of the array A are already sorted.
m Minimum of A can be evaluated with two comparisons.

m Iteratively: merge the two presorted halves of A in O(n).

109

Merge

10

10

1

11

12

12

16

110

a0~ W

o ~

Algorithm Merge(A, [, m,)

Input: Array A with length n, indexes 1 <1 <m <r <n.

All,...,m], Aijm+1,...,r] sorted

Output: A[l,...,r| sorted
B < new Array(r — 1+ 1)
i1l j+m+1, k<1
while : < m and j <r do

if Afi] < A[j] then B[k] + Ali]; i<+ i+ 1

else Blk]« Alj];j«+j+1

k<« k+1;
while i <mdo B[k]« Ali]; i<+ i+ 1, k+ k+1
while j <rdo Blk|«+ Aljl;j«j+ L k+k+1
for k < [to r do Alk] + B[k — 1+ 1]

m

Mergesort

5 2 6 1 8 4 3 9

5 206 1][s 4 3 9]

]5 2H6 1H8 4H3 9 |

1
1
1

r\)(—r\)
oo(—oo
O O

Split
Split
Split
Merge
Merge

Merge

2

Algorithm (recursive 2-way) Mergesort(A, [,)

Input: Array A with lengthn. 1 <[l <r<n
Output: A[l,...,r| sorted.

if [<7 then
m < [(I+7)/2] // middle position
Mergesort(A,l, m) // sort lower half

Mergesort(A,m +1,r) // sort higher half
Merge(A,l,m,r) // Merge subsequences

113

Analysis

Recursion equation for the number of comparisons and key movements:

n

T(n) = 7(| 5]) + 7(|

n

2J) + O(n) € ©(nlogn)

N4

Derivation for n = 2F

Let n = 2%, k > 0. Recurrence

d ifn=1
T(n) = {2T(n/2) +en ifn>1

Apply recursively
T(n)=2T(n/2)+cn=2(2T(n/4) + cn/2) +cn
=2(2(T'(n/8) +cn/4) +cn/2) +cn = ..
=2(2(...22T (n/2%) + en /287 1)) + en/22) + en/2) + en
= 2P (1) 4 28 Len 2kt 4 2 2en 2k =2 4 ok Rep ok R
kterms

= nd + cnk = nd + cnlogyn € O(nlogn).

115

7.2 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]

116

Quicksort

What is the disadvantage of Mergesort?

Requires additional ©(n) storage for merging.

How could we reduce the merge costs?

Make sure that the left part contains only smaller elements than the
right part.

How?

Pivot and Partition!

n7

Use a pivot

1. Choose a (an arbitrary) pivot p

2. Partition A in two parts, one part L with the elements with Ai] <p
and another part 2 with Afi] > p

3. Quicksort: Recursion on parts L and R

<|l<|<l<|<|p|>|>]>]>

1 r n

118

Algorithm Partition(A, [, r, p)

Input: Array A, that contains the pivot p in A[l,...,r] at least once.

Output: Array A partitioned in [I, ..

while | < r do

while A[l] < p do
L 1+ 14+1

while A[r] > p do
| r+<r—1

swap(A[l], A[r])

if A[l] = Alr| then
R A |

return |-1

.,r] around p. Returns position of p.

119

Algorithm Quicksort(A, [,)

Input: Array A with length n. 1 <[<r <n.

Output: Array A, sorted in A[l,...,7].
if [< r then

Choose pivot p € A[l,...,7]

k < Partition(A,l,r,p)
Quicksort(A4,l,k —1)
Quicksort(A,k+ 1,7)

120

Choice of the pivot.

The minimum is a bad pivot: worst case ©(n?)

b1 b2 b3 yZt D5

A good pivot has a linear number of elements on both sides.

Choice of the Pivot?

Randomness to our rescue (Tony Hoare, 1961). In each step choose a
random pivot.

N[=

[=
[=

AN

A)
schlecht gute Pivots schlecht

~

Probability for a good pivot in one trial: 3 =: p.

Probability for a good pivot after & trials: (1 — p)*=1 - p.
Expected number of trials®: 1/p =2

3Expected value of the geometric distribution:

122

Quicksort (arbitrary pivot)

A BB E
1 3 6
1 2 3 4
1 2 3 4
1 2 3 4

5 8
5 6 7
5 6 7
5 6 7

O

\O

O

123

Analysis: number comparisons

Worst case. Pivot = min or max; number comparisons:

Tn)=T(n—1)4+c-n, T(1)=0 = T(n) <€ O(n?

124

Analysis (randomized quicksort)

Theorem 4
On average randomized quicksort requires O(n - logn) comparisons.

(without proof.)

125

Practical Considerations.

m Practically the pivot is often the median of three elements. For example:
Median3(A[l], Alr], A[[l + r/2]]).

126

8. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 121 - 12.3]

127

Trees

Trees are

m Generalized lists: nodes can have more than one successor

m Special graphs: graphs consist of nodes and edges. A tree is a fully
connected, directed, acyclic graph.

128

Trees

Use

Decision trees: hierarchic representation of
decision rules

syntax trees: parsing and traversing of
expressions, e.g. in a compiler

Code tress: representation of a code, e.g. morse
alphabet, huffman code

Search trees: allow efficient searching for an
element by value

129

Examples

sho long

(—“E/start\T—)
N, N

/ N\ / N\ / N\ / N\
S v R W D K G 0
I\ N N SN N N SN T

H 'V F U 'L AP I (B X (C'Y zZ Q 06 CH

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

Morsealphabet

Examples

3/5+7.0
+
/ / \7.0
/\
3 5

Expression tree

131

Nomenclature

Wurzel

{

e Nl N

ll\/l;\\ll\ ll\/l\ll\ & &(b///l\/l\

leaves_)

m Order of the tree: maximum number of child nodes, here: 3
m Height of the tree: maximum path length root - leaf (here: 4)

132

Binary Trees

A binary tree is

m either a leaf, i.e. an empty tree,

m or an inner leaf with two trees T; (left subtree) and T, (right subtree) as
left and right successor.

In each inner node v we store key

m a key v.key and left right
m two nodes v.left and v.right to the roots of the left and right subtree.

a leaf is represented by the null-pointer

Linked List Node in Python

ListNode
1 5 @&—— 6 null

In

next

class ListNode:
entries key, next implicit via constructor

def __init__(self, key , next = Nomne):

"""Constructor that takes a key and, optionally, next."""

self .key = key
self.next = next

134

Now: tree nodes in Python

Search Node

class SearchNode: key-————+

implicit entries key, left, right

def __init__(self, k, 1=None, r=None): y{/). .K\EM

Constructor that takes a key k,
and optionally a left and right node.

self .key = k
self.left, self.right =1, r

None None None

/I I

left wNone None right

135

Binary search tree

A binary search tree is a binary tree that fulfils the search tree property:

m Every node v stores a key
m Keys in left subtree v.1left are smaller than v.key

m Keys in right subtree v.right are greater than v.key

/ \18
VANVAN
/ /\ \

2 99

136

Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
VT
while v # null do
if k = v.key then
| return v
else if k < v.key then
I v+ v.left
else
| v < v.right

return null

4 / 8 \13
10/ \19
J\

Search (12) — null

137

Searching in Python

def findNode(root, key):
n = root
while n != None and n.key != key:
if key < n.key:
n = n.left
else:
n = n.right
return n

138

Height of a tree

The height h(T') of a binary tree T' with root r is given by

hr) {0 if r = null

1 + max{h(rleft), h(r.right)} otherwise.

The worst case run time of the search is thus O(h(T"))

139

Insertion of a key

Insertion of the key &
m Search for k

m |f successful search: e.g. output
error

m Of no success: insert the key at the
leaf reached

4 / 8 \1
\5 10/

/

9
Insert (5)

3

\

19

140

Insert Nodes in Python

def addNode(root, key):
n = root
if n == None:
root = Node(key)
while n.key != key:
if key < n.key:
if n.left == None:
n.left = Node(key)
n = n.left
else:
if n.right == None:
n.right = Node(key)
n = n.right
return root

14

Tree in Python

class Tree:
def __init__(self):
self.root = None

def find(self,key):
return findNode(self.root, key)

def has(self,key):
return self.find(key) != None

def add(self,key):
self.root = addNode(self.root, key)

142

Remove node

Three cases possible:

m Node has no children
m Node has one child

m Node has two children

[Leaves do not count here]

3/8
\5
/

9

\1
10/

/

\

3
19

143

Remove node

Node has no children
Simple case: replace node by leaf.

8
3/ \13
NN

5 10
/
4

19

/

9

144

Remove node

Node has one child

Also simple: replace node by single child.

8
3/ \13
NN
10 19

5

/]

4 9

145

Remove node

Node v has two children

The following observation helps: the smallest
key in the right subtree v.right (the symmet-
ric successor of v)

m is smaller than all keys in v.right
m is greater than all keys in v.left
m and cannot have a left child.

Solution: replace v by its symmetric succes-
Sor.

146

By symmetry...

Node v has two children
Also possible: replace v by its symmetric pre-
decessor. \g) / \

Implementation: devil is in the detail!

147

Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v
w 4— v.right
T < w.left
while x # null do
w4 x
T + x.left

return w

148

Traversal possibilities

m preorder: v, then T (v), then Tiign (v).
8,3,5, 4,13,10, 9,19

m postorder: Tieq (v), then Tiigne (v), then v.

4,5,3,910,19,13, 8

m inorder: Tier (v), then v, then Tign: (v).
3,4,5,8,910,13,19

3/8
\5
/

\13
10/

/

9

\

19

149

Degenerated search trees

/%
9 / \8
7 Ng /)
4/ \8 10/ \19 \10

/’\
Insert 9,5,13,4,810,19 13
ideally balanced \19
Insert 4,5,8,910.13,19

linear list

Insert 1913,10,9,8,5,4
linear list

150

Probabilistically

A search tree constructed from a random sequence of numbers provides
an an expected path length of O(logn).

Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(y/n).

Balanced trees make sure (e.g. with rotations) during insertion or deletion
that the tree stays balanced and provide a O(logn) Worst-case guarantee.

151

9. Heaps

Datenstruktur optimiert zum schnellen Extrahieren von Minimum oder
Maximum und Sortieren. [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

152

[Max-]Heap*

Binary tree with the following proper- root
ties 2‘15

1. complete up to the lowest level /

2. Gaps (if any) of the tree in the 20 18 +—parent
last level to the right /' \l / \

3. Heap-Condition: 16 12 17 <—child
Max-(Min-)Heap: key of a child /\ \ / \
smaller (greater) that that of the 3 2
parent node leaves

*Heap(data structure), not: as in “heap and stack” (memory allocation)

153

Heap as Array

Tree — Array:

m children(z) = {2i,2i + 1} /[212]
m parent(:) = [i/2] " -
parent /[2]\ /[3}\
16 12 15

£ N
[22]20]18]16[12[5[17] 3 [2 [8 [11]14] 3/H\ /[0]\ }\ /17}\

1 2 4 5 8 9 10 1M 12
N 8] (9] [wu H

Children
Depends on the starting index*

“For array that start at 0: {2i,2i + 1} — {2i +1,2i + 2}, |i/2] — | (i — 1)/2]

154

Height of a Heap

What is the height H(n) of Heap with n nodes? On the i-th level of a
binary tree there are at most 2¢ nodes. Up to the last level of a heap all
levels are filled with values.

h—1

H(n) =min{h € N: > 2" >n}

=0
with Sl 2i = 20 — 1.
H(n) =min{h € N:2" >n+1},

thus
H(n) = [logy(n 4+ 1)].

155

Insert

20/ \18
/ N\ / N\

m Insert new element at the first free 1o 2
position. Potentially violates the heap /\ /\ /\ /\
property. S
m Reestablish heap property: climb
successively / \@
m Worst case number of operations: O(1
p (logn) / \ / \

@
Ly /\

156

Algorithm Sift-Up(A, m)

Input: Array A with at least m elements and Max-Heap-Structure on
All,...,m—1]
Output: Array A with Max-Heap-Structure on A[l,...,m].
v < Alm] // value
¢ <~ m // current position (child)
p < |c/2]| // parent node
while ¢ > 1 and v > A[p] do
Alc] + Alp] // Value parent node — current node
¢+ p // parent node — current node
- Le/2]

Alc] v // value — root of the (sub)tree

157

Remove the maximum

SN
20 18

m Replace the maximum by the lower right / \12 15/ \17

16
element. | / \ / \ / \ / \

m Reestablish heap property: sink
successively (in the direction of the

greater child) / \

m Worst case number of operations: O(logn)
/ \ / \

@ /\ /\

w

Why this is correct: Recursive heap structure

A heap consists of two heaps:

22

20

/ N\ /\

16 12

Soad\ /\

159

Algorithm SiftDown(A4, 7, m)

Input: Array A with heap structure for the children of i. Last element m.
Output: Array A with heap structure for i with last element m.
while 27 < m do
j < 2i; // j left child
if j <m and A[j] < A[j + 1] then
L j < j+1;,// jright child with greater key
if Afi] < A[j] then
swap(Ali], A[j])
i < ji // keep sinking down
else
| i« m; // sift down finished

160

Sort heap

All,...,n] is a Heap
While n > 1

m swap(A[l], An])

m SiftDown(A, 1,n — 1);
BEn<n—1

swap
siftDown
swap
siftDown
swap
siftDown
swap
siftDown
swap

S R IR e

N NN =2 U122 N

161

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

162

Algorithm HeapSort(A, n)

Input: Array A with length n.

Output: A sorted.

// Build the heap.

for i < n/2 downto 1 do

. SiftDown(A4,i,n);

// Now A is a heap.

for i < n downto 2 do
swap(A[1], Ali])
SiftDown(A4, 1,7 — 1)

// Now A is sorted.

163

Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node 2 key comparisons.
= sorting a heap costs in the worst case 2logn comparisons.

Number of memory movements of sorting a heap also O(nlogn).

164

Analysis: creating a heap

Calls to siftDown: n/2.

Thus number of comparisons and movements: v(n) € O(nlogn).
But mean length of the sift-down paths is much smaller:

We use that h(n) = [loggn + 1] = [logan| + 1 furn >0

[logy 1] llog, 7]
v(n)= Y 2! ([loggn] +1—1 —1)= 3 allsan=k
—
=0 number heaps on level | height heaps on level | k=0
I | [logy 1] k 00 k
:20g2n. — < . < 260/
kz:% ok = n kz:%) o = n (n)

with s(z) := Yo ket = 75 (0 <z < 1)and s(3) =2

165

10. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.21, Cormen et al, Kap.
Problem 13-3]

166

Objective

Searching, insertion and removal of a key in a tree generated from n keys
inserted in random order takes expected number of steps O(log, n).

But worst case ©(n) (degenerated tree).

Goal: avoidance of degeneration. Artificial balancing of the tree for each
update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of
O(logn).

Adelson-Venskii and Landis (1962): AVL-Trees

167

Balance of a node

The height balance of a node v is defined
as the height difference of its sub-trees
T)(v) and T,.(v)

bal(v) == h(T (1)) — h(Ti(v))

h

168

AVL Condition

AVL Condition: for eacn node v of a tree
bal(v) € {—1,0,1}

169

(Counter-)Examples

/' \

{) \ /N
[\ N\

/\

AVL tree with height 2
AVL tree with height 3

/' \
[\ [
/\

No AVL tree

Number of Leaves

m 1. observation: a binary search tree with n keys provides exactly n + 1
leaves. Simple induction argument.

m The binary search tree with n = 0 keys has m = 1 leaves
m When a key is added (n — n + 1), then it replaces a leaf and adds two new
leafs(m > m —14+2=m+1).

m 2. observation: a lower bound of the number of leaves in a search tree
with given height implies an upper bound of the height of a search tree
with given number of keys.

il

Lower bound of the leaves

/ N\

AVL tree with height 1 has
N(1) := 2 leaves.

/N /\
/\ /\
/' \

[\ 1\

AVL tree with height 2 has at
least N(2) := 3 leaves.

172

Lower bound of the leaves for h > 2

m Height of one subtree > h — 1. h—2 h—1
m Height of the other subtree > h — 2.
Minimal number of leaves N(h) is

N(h)=N(h—1)+ N(h—2) Ti(v)

T.(v)

Overal we have N(h) = Fj,» with Fibonacci-numbers F;, := 0, F := 1,
Fn = anl —+ Fn72 forn > 1.

173

Fibonacci Numbers, closed Form

It holds that

F; = ﬁ((/ﬁz)

with the roots ¢, ¢ of the golden ratio equation z2 — z — 1 = 0:

145
é +2\/_z1.618

1 _2\/5 ~ —0.618

-
|

174

Fibonacci Numbers, Inductive Proof

L %((éz _ qu) [+] (¢ — 1+2\/57 ¢ = 172\/5).

1. Immediate fori=0,7 = 1.

2. Leti > 2 and claim [«] true for all Fj, j < i.

Y +FY L@ eyt <<z>”)

%\

f

(674 6 = 4) - 8o+

“(o+1) 7

\/gqb’ %(

:ﬁ
(¢, fulfil z + 1 = 22
1 1

L R ey N St By
—\/gcb *(¢%) 5<Z> (¢7) = —=(¢" — ¢").

ot

175

Tree Height

Because \é] < 1, overal we have

h
N(h) € © ((1 +2*/5>) C 0(1.618")

and thus

N(h) > c-1.618"
= h<144logyn+c.

An AVL tree Is asymptotically not more than 44% higher than a perfectly
balanced tree?

The perfectly balanced tree has a height of [log, n + 1]

176

Insertion

Balance

m Keep the balance stored in each node

m Re-balance the tree in each update-operation
New node n is inserted:

m Insert the node as for a search tree.
m Check the balance condition increasing from n to the root.

177

Balance at Insertion Point

/NN ANEVAN
ANANA AV AN A
case T: bal(p) = +1 case 2: bal(p) = —1

Finished in both cases because the subtree height did not change

178

Balance at Insertion Point

/N /N ANEVAN
=N =N

case 3.1: bal(p) = 0 right case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)

179

upin(p) - invariant

When upin(p) is called it holds that

m the subtree from p is grown and
m bal(p) € {—1,+1}

180

upin(p)

Assumption: p is left son of pp®
AR AR
ANEAN ANEAN

case 1: bal(pp) = +1, done. case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

6If p is a right son: symmetric cases with exchange of +1 and —1

181

upin(p)
Assumption: p is left son of pp

pp -1

o/ N\
/\

case 3: bal(pp) = —1,

This case is problematic: adding n to the subtree from pp has violated the
AVL-condition. Re-balance!

Two cases bal(p) = —1, bal(p) = +1

182

Rotations

case 11 bal(p) = —1.7
’I/ j: 2

pp Yy -2
pxz -1

7N\

to

=
rotation
right

h j’ 1

’p right son: = bal(pp) = bal(p) = +1, left rotation

ppx 0

Py o

hj:l

183

Rotations

case 11 bal(p) = —1.8

h42
pp z -2

e

px +1

////’ ;y -1/ +1
7N\

t {3

h—1 h—2

B D) S 1

ty

-
double
rotation

h-1 left-right

8p right son = bal(plfo) = +1, bal(p) = —1, double rotation right left

7N\

t
h—1

h41
pp Yy 0
z 0/—-1 z +1/0
19 i3
ty
h—1 h—2 h—1
h—2 h—1

184

Analysis

m Tree height: O(logn).

m Insertion like in binary search tree.

m Balancing via recursion from node to the root. Maximal path lenght
O(logn).

Insertion in an AVL-tree provides run time costs of O(logn).

185

Deletion

Case 1: Children of node n are both leaves Let p be parent node of n. =
Other subtree has height A’ =0, 1 or 2.

m i/ = 1. Adapt bal(p).
m 2/ = 0: Adapt bal(p). Call upout (p).
m 1/ = 2: Rebalanciere des Teilbaumes. Call upout (p).

N N
SN L L

h=0,1,2 h=0,1,2

186

Deletion

Case 2: one child k£ of node n is an inner node
m Replace n by k. upout (k)

N
SN L
/' \

N
/ \

187

Deletion

Case 3: both children of node n are inner nodes

m Replace n by symmetric successor. upout (k)
m Deletion of the symmetric successor is as in case 1 or 2.

188

upout (p)

Let pp be the parent node of p.
(a) p left child of pp

1. bal(pp) = =1 = bal(pp) < 0. upout (pp)
2. bal(pp) =0 = bal(pp) + +1.
3. bal(pp) = +1 = next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and —1.

189

upout (p)

Case (a).3: bal(pp) = +1. Let ¢ be brother of p
(a).31: bal(q) = 0.2

p x?ygz 0 /?/4 \
/N /N _ a
)) Left Rotate(y) / \

h—1 h—1 1 9 4
3 4 h—1 h—1 h+1

h+1 h+1

°(b).3.1: bal(pp) = —1, bal(q) = —1, Right rotation

190

upout (p)

Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.1°

Y+l
plx 0 gz +1
1 2
h—1 h—1
3
Ii
' 4
h+1

"
. /N
Left Rotate(y) / \
1 2 3 E

h—1 h-1 h h+1

plus upout (r).

19(b).3.2: bal(pp) = —1, bal(q) = +1, Right rotation+upout

191

upout (p)

Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = —1."

}yi ZJO/ \z
/N SN L /\{ NN
Rotate right (2)
1) /\ left (y)
h—1 h—1 5 1 9 3 4 5
h h—1 h—1 h

plus upout (r).
M(b).3.3: bal(pp) = —1, bal(q) = —1, left-right rotation + upout

192

Conclusion

m AVL trees have worst-case asymptotic runtimes of O(logn) for searching,
insertion and deletion of keys.

m Insertion and deletion is relatively involved and an overkill for really
small problems.

193

11. Hashing

Hash Tables, Pre-Hashing, Hashing, Resolving Collisions using Chaining,

Simple Uniform Hashing, Popular Hash Functions, Table-Doubling, Open
Addressing: Probing [Ottman/Widmayer, Kap. 41-4.3.2, 434, Cormen et al,
Kap. 11-11.4]

194

Motivating Example

Gloal: Efficient management of a table of all n ETH-students of

Possible Requirement: fast access (insertion, removal, find) of a dataset
by name

195

Dictionary

Abstract Data Type (ADT) D to manage items™ i with keys k € K with

operations

m D.insert(i): Insert or replace i in the dictionary D.

m D.delete(i): Delete ¢ from the dictionary D. Not existing = error
message.

m D.search(k): Returns item with key k if it exists.

2Key-value pairs (k,v), in the following we consider mainly the keys

196

Dictionaries in Python

dictionary =—p fruits = {
"banana": 2.95, "kiwi": 0.70,
"pear": 4.20, "apple": 3.95
}

insert = fruits["melon"] = 3.95
update =—p fruits["banana"] = 1.90
find = print("banana", fruits["banana"])
print("melon in fruits", "melon" in
fruits)print("onion in fruits"
"onion" in fruits)
remove —» del fruits["strawberry"]
iterate =—p for name,price in fruits.items():
print (name,"->",price)

197

Dictionaries in Java

dictionary —) Map<String,Double> fruits =
new HashMap<String,Double>();

insert = fruits.put("banana", 2.95);
fruits.put("kiwi", 0.70);
fruits.put("strawberry", 9.95);
fruits.put("pear", 4.20);
fruits.put("apple", 3.95);
update =—p fruits.put("banana", 2.90);
find = Out.println("banana " + fruits.get("banana"));
remove —» fruits.remove("banana");
iterate — for (String s: fruits.keySet())
Out.println(s+" " + fruits.get(s));

Motivation / Use

Perhaps the most popular data structure.

m Supported in many programming languages (C++, Java, Python, Ruby,
Javascript, C# ...)

m Obvious use

m Databases, Spreadsheets
m Symbol tables in compilers and interpreters

m Less obvious

m Substrin Search (Google, grep)

m String commonalities (Document distance, DNA)
m File Synchronisation

m Cryptography: File-transfer and identification

199

1. Idea: Direct Access Table (Array)

Index ltem

0 -

’] -

2 —

3 [3,value(3)]
[‘_ —

5 —

k [kvalue(k)]

Problems
1. Keys must be non-negative integers
2. Large key-range = large array

200

Solution to the first problem: Pre-hashing

Prehashing: Map keys to positive integers using a function ph: K — N

m Theoretically always possible because each key is stored as a
bit-sequence in the computer

m Theoretically also: z = y < ph(x) = ph(y)

m Practically: APIs offer functions for pre-hashing. (Java:
object.hashCode (), C++: std: :hash<>, Python: hash(object))

m APIs map the key from the key set to an integer with a restricted size.™

BTherefore the implication ph(z) = ph(y) = = = y does not hold any more for all z,y.
201

Prehashing Example : String

Mapping Name s = s185 ... ;, to key

1=0

l—1
ph(s) = (Z Si. i b’) mod 2%

b so that different names map to different keys as far as possible.

b Word-size of the system (e.g. 32 or 64)
Example (Java) with b = 31, w = 32. Ascii-Values s;.

Anna — 2045632
Jacqueline — 2042089953442505 mod 232 = 507919049

202

Implementation Prehashing (String) in Java

-1
phb,m(s) = <Z Sl—i+1° bi) mod m
i=0

With b = 31 and m = 232 we get in Java™

int prehash(String s){
int h = 0;
for (int k = 0; k < s.length(); ++k){
h =h *x b + s.charAt(k);
}
return h;

}
"Try to understand why this works

203

Losung zum zweiten Problem: Hashing

Reduce the universe. Map (hash-function) h: K — {0,....m — 1} (m~n =
number entries of the table)
V)

]
"E 'el(kl):/l
L
3 'e\(l/\r)cz

Collision: h(k;) = h(k;).

204

Nomenclature

Hash funtion /4: Mapping from the set of keys K to the index set
{0,1,...,m — 1} of an array (hash table).
h:K—{0,1,...,m—1}.

Normally || > m. There are ky, ky € K with h(k,) = h(k,) (collision).
A hash function should map the set of keys as uniformly as possible to the
hash table.

205

Resolving Collisions: Chaining

m =17 K ={0,...,500}, h(k) = k mod m.

Keys 12,55 ,5,15,2,19 , 43
Direct Chaining of the Colliding entries

0 1 2 3 4 5 6
hash table [TeTe[T TeTlel]
I 1 N A
15 2 12 | 55
g g
1 1
Colliding entries 43 5
g
1
19

206

Algorithm for Hashing with Chaining

m insert(:) Check if key &k of item ¢ is in list at position h(k). If no, then
append i to the end of the list. Otherwise replace element by i.

m find(k) Check if key k is in list at position h(k). If yes, return the data
associated to key k, otherwise return empty element null.

m delete(k) Search the list at position h(k) for k. If successful, remove the
list element.

207

Worst-case Analysis

Worst-case: all keys are mapped to the same index.
= O(n) per operation in the worst case. @

208

Simple Uniform Hashing

Strong Assumptions: Each key will be mapped to one of the m available
slots

m with equal probability (Uniformity)
m and independent of where other keys are hashed (Independence).

209

Simple Uniform Hashing

Under the assumption of simple uniform hashing:
Expected length of a chain when n elements are inserted into a hash table
with m elements

n—1 n—1
E(Lange Kette j) = E(1(k; = j)) =Y P(k; =j)
=0 =0
noq
— ZE

—_

1=

a =n/mis called load factor of the hash table.

210

Simple Uniform Hashing

Theorem 5

Let a hash table with chaining be filled with load-factor a = = < 1.
Under the assumption of simple uniform hashing, the next operation
has expected costs of <1+ a.

Consequence: if the number slots m of the hash table is always at least
proportional to the number of elements n of the hash table, n € O(m) =
Expected Running time of Insertion, Search and Deletion is O(1).

n

Advantages and Disadvantages of Chaining

Advantages

m Possible to overcommit: « > 1 allowed
m Easy to remove keys.

Disadvantages
m Memory consumption of the chains-

212

An Example of a popular Hash Function

Division method
h(k) = k mod m

Ideal: m prime, not too close to powers of 2 or 10
But often: m = 2% —1 (k € N)
Other method: multiplication method (cf. Cormen et al, Kap. 11.3).

213

Table size increase

m We do not know beforehand how large n will be
m Require m = O(n) at all times.

Table size needs to be adapted. Hash-Function changes = rehashing

m Allocate array A" with size m’ > m

m Insert each entry of A into A’ (with re-hashing the keys)
m Set A+ A

m Costs O(n+m +m').

How to choose m'?

214

Table size increase

mlldean=m=m' < m+1
Increase for each insertion: Costs ©(1 +2+ 3+ --- +n) = O(n?) ®

m 2ldean =m = m' < 2m Increase only ifm = 2

O(1+2+4+8+---+n)=06(n)

Few insertions cost linear time but on average we have O(1) ®
Jede Operation vom Hashing mit Verketten hat erwartet amortisierte
Kosten ©(1).

(= Amortized Analysis)

215

Amortisierte Analyse

General procedure for dynamic arrays (e.g. Java: ArrayList, Python: List)

m The data structure provides, besides the data array, two numbers: size of
the array (capacity m) and the number of used entries (size n)

m Double the size and copy entries when the listis fulln = m = m « 2n.
Kosten ©(m).

m Runtime costs for n = 2¥ insertion operations:
O(1+2+4+8+---+2F) =02 —1) =0(n).

Costs per operation averaged over all operations = amortized costs = O(1)
per insertion operation

216

Open Addressing

Store the colliding entries directly in the hash table using a probing
function s : £ x {0,1,...,m —1} - {0,1,...,m — 1}
Key table position along a probing sequence

S(k) := (s(k,0),s(k,1),...,s(k,m—1)) mod m

Probing sequence must for each k£ € K be a permutation of
{0,1,...,m—1}

Notational clarification: this method uses open addressing(meaning that the positions in
the hashtable are not fixed) but it is a closed hashing procedure (because the entries
stay in the hashtable)

217

Algorithms for open addressing

m insert(:) Search for kes k of i in the table according to S(k). If k is not
present, insert k at the first free position in the probing sequence.
Otherwise error message.

m find(k) Traverse table entries according to S(k). If k is found, return
data associated to k. Otherwise return an empty element null.

m delete(k) Search k in the table according to S(k). If k is found, replace
it with a special key removed.

218

Linear Probing

s(k,j) =h(k)+j5=S(k)= (h(k),h(k)+1,...,h(k) + m—1) mod m

m =717, K={0,...,500}, h(k) = k mod m.
Key 12,55 ,5,15,2,19

0 1 2 3 4 5 6

5 151 2 | 19 12 | 55

Discussion

Example o = 0.95

The unsuccessful search consideres 200 table entries on average! (here
without derivation).

Disadvantage of the method?

Primary clustering: similar hash addresses have similar probing sequences
= long contiguous areas of used entries.

220

Quadratic Probing

s(k,j) = h(k) + [5/2](=1)7*

S(k) = (h(k),h(k) + 1,h(k) — 1, h(k) + 4,h(k) — 4,...) mod m
m =17, K ={0,...,500}, h(k) = k mod m.
Keys 12,55 ,5,15,2,19
0 1 5 6
19 1 15 12 | 55

221

Discussion

Example o = 0.95

Unsuccessfuly search considers 22 entries on average (here without deriva-
tion)

Problems of this method?

Secondary clustering: Synonyms k and &’ (with h(k) = h(k’)) travers the
same probing sequence.

222

Double Hashing

Two hash functions h(k) and A'(k). (k; J)=h(k)+j-H (k).
S(k) = (h(k), h(k) + I (k), h(k) + 2K/ (), . .., h(k) + (m — 1)/ (k)) mod m

m="7K={0,...,500}, h(k) =k mod 7, h'(k) =1+ k mod 5.
Keys 12,55 ,5,15,2,19

0 1 2 3 4 5 6

5 151 2 | 19 12 | 55

223

Double Hashing

m Probing sequence must permute all hash addresses. Thus 2/(k) # 0 and
R/ (k) may not divide m, for example guaranteed with m prime.

m /' should be as independent of h as possible (to avoid secondary
clustering)

Independence largely fulfilled by h(k) = k£ mod m and
h'(k) =1+ k mod (m — 2) (m prime).

224

Uniform Hashing

Strong assumption: the probing sequence S(k) of a key [is equaly likely to
be any of the m! permutations of {0,1,...,m — 1}

(Double hashing is reasonably close)

225

Analysis of Uniform Hashing with Open Addressing

Theorem 6

Let an open-addressing hash table be filled with load-factor a = * <
1. Under the assumption of uniform hashing, the next operation has
expected costs of < .

Without Proof, cf. e.g. Cormen et al, Kap. 1.4

226

12. Graphs

Notation, Representation, Graph Traversal (DFS, BFS), Topological Sorting
[Ottman/Widmayer, Kap. 91 - 9.4,Cormen et al, Kap. 22]

227

Konigsberg 1736

KONINGSBERGA

228

[Multi]Graph

Cycles

m s there a cycle through the town (the graph)
that uses each bridge (each edge) exactly
once?

m Euler (1736): no.

m Such a cycle is called Eulerian path.

m Eulerian path < each node provides an even
number of edges (each node is of an even
degree).

‘=" Is straightforward, “<" ist a bit more difficult but
still elementary.

230

(1)
Q}Qe

undirected directed
V ={1,2,3,4,5} V ={1,2,3,4,5}
E :{{1, 2}, {17 3}, {2, 3}, {2,4}, FE :{(1, 3), (2, 1), (2, 5), (3, 2),

{2,5},{3,4},{3,5}, {4,5}} (3,4),(4,2),(4,5),(5,3)}

231

Notation

A directed graph consists of a set V = {1, ...,v,} of nodes (Vertices) and
aset E CV xV of Edges. The same edges may not be contained more

than once.
M @

e—® %

loop

232

Notation

An undirected graph consists of a set V = {v,...,v,} of nodes a and a
set £ C {{u,v}|u,v € V} of edges. Edges may bot be contained more than

once.”®

undirected graph

>As opposed to the introductory example - it is then called multi-graph.
233

Notation

An undirected graph G = (V, E) without loops where E comprises all
edges between pairwise different nodes is called complete.

a complete undirected graph

234

Notation

A graph where V' can be partitioned into disjoint sets U and W such that
each e € E provides a node in U and a node in Wis called bipartite.

235

Notation

A weighted graph G = (V, F, ¢) is a graph G = (V, E)) with an edge weight
function ¢ : £ — R. ¢(e) is called weight of the edge e.

236

Notation

For directed graphs G = (V, E)

m w e Viscalled adjacenttov € V, if (v,w) € E

m Predecessors of v € V: N~ (v) := {u € V|(u,v) € E}.
Successors: N*(v) := {u € V|(v,u) € E}

237

Notation

For directed graphs G = (V, E)

m In-Degree: deg™ (v) = [N~ (v)],
Out-Degree: deg™ (v) = [N T (v)|

el

deg™ (v) = 3, deg™ (v) = 2

deg™ (w) =1, degt(w) = 1

238

Notation

For undirected graphs G = (V, E):

m w e Viscalled adjacenttov € V, if {v,w} € FE

m Neighbourhood of v € V: N(v) = {w € V|{v,w} € E}

m Degree of v: deg(v) = |N(v)| with a special case for the loops: increase
the degree by 2.

Ny Qo

deg(v) =5 deg(w) =2

239

Relationship between node degrees and number of
edges

For each graph G = (V, E) it holds
1. Yperv deg™ (v) = e degt (v) = |E|, for G directed
2. Y ,ey deg(v) = 2|E|, for G undirected.

240

Paths

m Path: a sequence of nodes (vy, ..., vy1) such that for eachi € {1...k}
there is an edge from v; to vy .

m Length of a path: number of contained edges k.

m Weight of a path (in weighted graphs): =%, ¢((vi, vit1)) (bzw.
25:1 c({vi, Uz’+1}>)

m Simple path: path without repeating vertices

241

Connectedness

m An undirected graph is called connected, if for eacheach pairv,w € V
there is a connecting path.

m A directed graph is called strongly connected, if for each pair v,w € V
there is a connecting path.

m A directed graph is called weakly connected, if the corresponding
undirected graph is connected.

242

Simple Observations

m generally: 0 < |E| € O(|V]?)

m connected graph: |E| € Q(|V])

m complete graph: |E| = MIVI=D (yndirected)

m Maximally [E| = |V]? (d|rected)|E| = VYD (yndirected)

243

Cycles

m Cycle: path (v, ..., vk1) With v = v

m Simple cycle: Cycle with pairwise different vy, ..., v, that does not use
an edge more than once.

m Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2 (loops
have length 1)

244

Representation using a Matrix

Graph G = (V, E) with nodes v; ..., v, stored as adjacency matrix
Ag = (ai)1<ij<n With entries from {0, 1}. a;; = 1 if and only if edge from v;
to Vj.

O OO OO
OO = O
_ O O O =
OO = O =
—_ o = O O

Memory consumption O(|V|?). Ag is symmetric, if G undirected.

245

Representation with a List

Many graphs G = (V, E) with nodes vy, ..., v, 123 45
provide much less than n? edges. Represen- ol [of [o
tation with adjacency list: Array A[1], ..., A[n], l l
A; comprises a linked list of nodes in Nt (v;). 2 2 3
P11
3 4 5
I o
4 5

Memory Consumption O(|V| + | E]).

246

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg’v)

find v € V without neighbour/successor ©(n?) ©(n)
(u,v) € E7? O(1) O(degtv)
Insert edge o(1) ©6(1)
Delete edge O(1) O(deg’v)

247

Depth First Search

248

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

\ \
4 4

AN

~
N

\ \
4 4

Order a,b,c, f,d,e, g, h,i

Adjazenzliste

b | cld g
v |
ci|l fll e h

e o e @

S e O e S

249

Colors

Conceptual coloring of nodes

m white: node has not been discovered yet.

m grey: node has been discovered and is marked for traversal / being
processed.

m black: node was discovered a