Informatik Il

Ubung 9

FS 2020

Program Today

Repetition BFS
Repetition of Lecture

In-Class-Exercise (practical)

Python: Datastructures

m Lists, Stacks, Queues:
https://docs.python.org/3/tutorial/datastructures.html

m Heap: https://docs.python.org/3/1library/heapq.html

m (Synchronized) Queue, PriorityQueue (=Heap):
https://docs.python.org/3/library/queue.html

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/library/heapq.html
https://docs.python.org/3/library/queue.html

BFS

def BFS(v):
color = {v: Grey} # white if not contained
queue = Queue();
queue.put(v) ;
while not queue.empty():
u = queue.get()
for e in u.edges:
w = e.target
if w not in color:
color[w] = Grey
print (w)
queue.put (w)
color[u] = Black

2. Repetition of Lecture

Weighted Graphs

Given: G = (V,E,c),c: E = R, s,t € V.

Wanted: Length (weight) of a shortest path from s to ¢.
Path: p = (s = vg,v1,...,0 = t), (v;,v;11) € E (0 <i <k)
Weight: c(p) := 3"y c((vi, vig1)).

a
2 1 / &
N |

Path with weight 9

Shortest Paths

Weight of a shortest path from w to v:

51, v) = 00 no path from u to v
’ min{c(p) : u ~» v} sonst

General Algorithm

Initialise ds and 7,: ds[v] = oo, 7s[v] = null for each v € V
Set dg[s] < 0
Choose an edge (u,v) € £
Relaxiere (u,v):
if ds[v] > d[u] + c(u,v) then
ds[v] < ds[u] + c(u, v)
Ts[v] ¢ u
Repeat 3 until nothing can be relaxed any more.
(until ds[v] < ds[u] + c(u,v) V(u,v) € E)

Dijkstra (positive egde weights)

Set V' of nodes is partitioned into

m the set // of nodes for which a
shortest path from s is already known,

mtheset R=J, ., V" (v) \ M of
nodes where a shortest path is not yet
known but that are accessible directly
from M,

m the set of nodes that
have not yet been considered.

Algorithm Dijkstra(G, s)

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V/,
Output: Minimal weights d of the shortest paths and corresponding predecessor
node for each node.

foreach u € V do
dsu] < oo; ms[u] < null

ds[s] < 0; R+ {s}
while R # () do
u < ExtractMin(R)
foreach v € N*(u) do
if ds[u] + c(u,v) < ds[v] then
ds[v] < ds[u] + c(u, v)
Ts[v] < u
R+ RU{v}

Example

yi \
) [4
\ /

Example

2

N
O

3

M = {s}

R={}
U={a,b,c,d, e}

Example

M = {s}
R = {a,b}
U={cd,e}

Example

M = {s,a}
R ={b,c}
U={d,e}

Example

M ={s,a,b}
R = {c,d}
U = {e}

Example

M = {s,a,b,d}

R=/{c, e}
U={}

Example

M = {s,a,b,d, e}

R = {c}
U={}

Example

M = {s,a,b,d, e, c}

R ={}
U={}

Implementation: Data Structure for R?

Required operations:

m Insert (add to R)
m ExtractMin (over R) and DecreaseKey (Update in R)

foreach v € N*(u) do

if ds[u] + c(u,v) < ds[v] then

ds[v] < ds[u] + c(u,v)

Ts[v] < u

if v € R then

DecreaseKey(R, v) // Update of a d(v) in the heap of R

else
. R+ RU{v} // Update of d(v) in the heap of R

MinHeap!

DecreaseKey

m DecreaseKey: climbing in MinHeap in O(log |V])
m Position in the heap (i.e. array index of element in the heap)?

DecreaseKey

m DecreaseKey: climbing in MinHeap in O(log |V])
m Position in the heap (i.e. array index of element in the heap)?

m alternative (a): Store position at the nodes

DecreaseKey

m DecreaseKey: climbing in MinHeap in O(log |V])
m Position in the heap (i.e. array index of element in the heap)?

m alternative (a): Store position at the nodes
m alternative (b): Hashtable of the nodes

DecreaseKey

m DecreaseKey: climbing in MinHeap in O(log |V])
m Position in the heap (i.e. array index of element in the heap)?

m alternative (a): Store position at the nodes

m alternative (b): Hashtable of the nodes

m alternative (c): re-insert node each time after update-operation and mark
it as visited ("deleted") once extracted (Lazy Deletion)

Runtime Dijkstra

n:=|V|,m:=|F|

m nx ExtractMin: O(nlogn)

m mx Insert or DecreaseKey: O(mlog|V|)

m 1x Init: O(n)

m Overal: O((n + m)logn). for connected graphs: O(m logn)

Conclusion

n = |V],m:=|E]

problem method runtime
c=1 BFS O(m +n)
DAG Top-Sort O(m+n)
c>0 Dijkstra O((m+n)
general Bellman-Ford" O(m - n)

Twill be covered later in class (dynamic programming)

3. In-Class-Exercise (practical)

Shortest Path in a Maze

|\

iﬂ!.&// NS N\

——

BRES

‘/ //llaﬁlui

ﬁﬁ

\[

V///)

ﬁllrln|| Tk@wﬁ!

I////

e ———

////,,7,/177 APRTY

/ /,(// 1\ ///

BFS

color = {s: Grey}
dist = {s:0}
predecessor = {s: None}
queue = Queue();
queue.put(s);
while not queue.empty():
u = queue.get()
for e in u.edges:
W = e.target
if w not in color: # color is white
color[w] = Grey
predecessor[w] = u
dist[w] = dist[u] + e.weight
queue . put (w)
color[u] = Black

Solution Dijkstra

dist = {s:0}
predecessor = {s: None}
R = PriorityQueue()
R.put (PriorityEntry(0,s))
while not R.empty():
p = R.getQ
u = p.data
if p.priority == dist[u]: # lazy deletion
for e in u.edges:
v = e.target
w = dist[u] + e.weight
if v not in dist or w < dist[v]:
dist[v] = w
predecessor[v] = u
R.put (PriorityEntry(w,v))

Questions / Suggestions?

	Repetition BFS
	Repetition of Lecture
	In-Class-Exercise (practical)

