Informatik II

Übung 9

FS 2020

1

Program Today

1 Repetition BFS

2 Repetition of Lecture

3 In-Class-Exercise (practical)

Lists, Stacks, Queues:

https://docs.python.org/3/tutorial/datastructures.html

- Heap: https://docs.python.org/3/library/heapq.html
- (Synchronized) Queue, PriorityQueue (=Heap): https://docs.python.org/3/library/queue.html

BFS

```
def BFS(v):
 color = {v: Grey} # white if not contained
 queue = Queue();
 queue.put(v);
 while not queue.empty():
   u = queue.get()
   for e in u.edges:
     w = e.target
     if w not in color:
       color[w] = Grev
       print(w)
       queue.put(w)
   color[u] = Black
```

2. Repetition of Lecture

Weighted Graphs

Given: $G = (V, E, c), c : E \to \mathbb{R}, s, t \in V.$ *Wanted:* Length (weight) of a shortest path from *s* to *t*. *Path:* $p = \langle s = v_0, v_1, \dots, v_k = t \rangle$, $(v_i, v_{i+1}) \in E$ ($0 \le i < k$) *Weight:* $c(p) := \sum_{i=0}^{k-1} c((v_i, v_{i+1})).$

Path with weight 9

Weight of a shortest path from u to v:

$$\delta(u,v) = \begin{cases} \infty & \text{no path from } u \text{ to } v \\ \min\{c(p) : u \xrightarrow{p} v\} & \text{sonst} \end{cases}$$

General Algorithm

- Initialise d_s and π_s : $d_s[v] = \infty$, $\pi_s[v] =$ null for each $v \in V$
- **2** Set $d_s[s] \leftarrow 0$
- **3** Choose an edge $(u, v) \in E$

Relaxiere
$$(u, v)$$
:
if $d_s[v] > d[u] + c(u, v)$ then
 $d_s[v] \leftarrow d_s[u] + c(u, v)$
 $\pi_s[v] \leftarrow u$

4 Repeat 3 until nothing can be relaxed any more. (until $d_s[v] \le d_s[u] + c(u, v) \quad \forall (u, v) \in E$)

Dijkstra (positive egde weights)

Set V of nodes is partitioned into

- the set M of nodes for which a shortest path from s is already known,
- the set $R = \bigcup_{v \in M} N^+(v) \setminus M$ of nodes where a shortest path is not yet known but that are accessible directly from M,
- the set $U = V \setminus (M \cup R)$ of nodes that have not yet been considered.

Algorithm Dijkstra(G, s)

Input: Positively weighted Graph G = (V, E, c), starting point $s \in V$, **Output:** Minimal weights d of the shortest paths and corresponding predecessor node for each node.

```
foreach u \in V do
  d_s[u] \leftarrow \infty; \pi_s[u] \leftarrow \mathsf{null}
d_s[s] \leftarrow 0; R \leftarrow \{s\}
while R \neq \emptyset do
      u \leftarrow \mathsf{ExtractMin}(R)
      foreach v \in N^+(u) do
             if d_{s}[u] + c(u, v) < d_{s}[v] then
                   d_s[v] \leftarrow d_s[u] + c(u, v)
            \pi_s[v] \leftarrow uR \leftarrow R \cup \{v\}
```


$$M = \{s\}$$
$$R = \{a, b\}$$
$$U = \{c, d, e\}$$

 $M = \{s, a\}$ $R = \{b, c\}$ $U = \{d, e\}$

$$M = \{s, a, b\}$$
$$R = \{c, d\}$$
$$U = \{e\}$$

$$M = \{s, a, b, d\}$$
$$R = \{c, e\}$$
$$U = \{\}$$

$$A = \{s, a, b, d, e\}$$
$$R = \{c\}$$
$$U = \{\}$$

/

Implementation: Data Structure for *R*?

Required operations:

MinHeap!

```
Insert (add to R)
ExtractMin (over R) and DecreaseKey (Update in R)
   foreach v \in N^+(u) do
       if d_s[u] + c(u, v) < d_s[v] then
           d_s[v] \leftarrow d_s[u] + c(u, v)
           \pi_{s}[v] \leftarrow u
            if v \in R then
                \mathsf{DecreaseKey}(R, v)
                                                // Update of a d(v) in the heap of R
            else
            R \leftarrow R \cup \{v\}
                                                  // Update of d(v) in the heap of R
```


DecreaseKey: climbing in MinHeap in O(log |V|)
 Position in the heap (i.e. array index of element in the heap)?

- DecreaseKey: climbing in MinHeap in $\mathcal{O}(\log |V|)$
- Position in the heap (i.e. array index of element in the heap)?
 - alternative (a): Store position at the nodes

- DecreaseKey: climbing in MinHeap in $\mathcal{O}(\log |V|)$
- Position in the heap (i.e. array index of element in the heap)?
 - alternative (a): Store position at the nodes
 - alternative (b): Hashtable of the nodes

DecreaseKey: climbing in MinHeap in $\mathcal{O}(\log |V|)$

Position in the heap (i.e. array index of element in the heap)?

- alternative (a): Store position at the nodes
- alternative (b): Hashtable of the nodes
- alternative (c): re-insert node each time after update-operation and mark it as visited ("deleted") once extracted (Lazy Deletion)

- n:=|V|, m:=|E|
- $n \times \text{ExtractMin: } \mathcal{O}(n \log n)$
- $m \times$ Insert or DecreaseKey: $\mathcal{O}(m \log |V|)$
- $1 \times$ Init: $\mathcal{O}(n)$
- Overal: $\mathcal{O}((n+m)\log n)$. for connected graphs: $\mathcal{O}(m\log n)$

Conclusion

$$n := |V|, m := |E|$$

problem	method	runtime	dense	sparse
			$m\in \mathcal{O}(n^2)$	$m\in \mathcal{O}(n)$
$c \equiv 1$	BFS	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
DAG	Top-Sort	$\mathcal{O}(m+n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
$c \ge 0$	Dijkstra	$\mathcal{O}((m+n)\log n)$	$\mathcal{O}(n^2 \log n)$	$\mathcal{O}(n\log n)$
general	Bellman-Ford ¹	$\mathcal{O}(m \cdot n)$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$

¹ will be covered later in class (dynamic programming)

3. In-Class-Exercise (practical)

Shortest Path in a Maze

BFS

```
color = {s: Grey}
dist = \{s:0\}
predecessor = {s: None}
queue = Queue();
queue.put(s);
while not queue.empty():
 u = queue.get()
 for e in u.edges:
   w = e.target
    if w not in color: # color is white
     color[w] = Grev
     predecessor[w] = u
     dist[w] = dist[u] + e.weight
     queue.put(w)
  color[u] = Black
```

Solution Dijkstra

```
dist = \{s:0\}
predecessor = {s: None}
R = PriorityQueue()
R.put(PriorityEntry(0,s))
while not R.empty():
 p = R.get()
 u = p.data
  if p.priority == dist[u]: # lazy deletion
   for e in u.edges:
     v = e.target
     w = dist[u] + e.weight
     if v not in dist or w < dist[v]:
       dist[v] = w
       predecessor[v] = u
       R.put(PrioritvEntrv(w.v))
```

Questions / Suggestions?