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Program Today

1 Repetition BFS

2 Repetition of Lecture

3 In-Class-Exercise (practical)
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Python: Datastructures

Lists, Stacks, Queues:
https://docs.python.org/3/tutorial/datastructures.html

Heap: https://docs.python.org/3/library/heapq.html
(Synchronized) Queue, PriorityQueue (=Heap):
https://docs.python.org/3/library/queue.html
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BFS

def BFS(v):
color = {v: Grey} # white if not contained
queue = Queue();
queue.put(v);
while not queue.empty():

u = queue.get()
for e in u.edges:

w = e.target
if w not in color:

color[w] = Grey
print(w)
queue.put(w)

color[u] = Black
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2. Repetition of Lecture
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Weighted Graphs
Given: G = (V,E, c), c : E → R, s, t ∈ V .
Wanted: Length (weight) of a shortest path from s to t.
Path: p = 〈s = v0, v1, . . . , vk = t〉, (vi, vi+1) ∈ E (0 ≤ i < k)
Weight: c(p) :=

∑k−1
i=0 c((vi, vi+1)).
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Shortest Paths

Weight of a shortest path from u to v:

δ(u, v) =

{
∞ no path from u to v
min{c(p) : u p

 v} sonst
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General Algorithm

1 Initialise ds and πs: ds[v] =∞, πs[v] = null for each v ∈ V
2 Set ds[s]← 0

3 Choose an edge (u, v) ∈ E
Relaxiere (u, v):

if ds[v] > d[u] + c(u, v) then
ds[v]← ds[u] + c(u, v)
πs[v]← u

4 Repeat 3 until nothing can be relaxed any more.
(until ds[v] ≤ ds[u] + c(u, v) ∀(u, v) ∈ E)
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Dijkstra (positive egde weights)

Set V of nodes is partitioned into
the set M of nodes for which a
shortest path from s is already known,
the set R =

⋃
v∈M N+(v) \M of

nodes where a shortest path is not yet
known but that are accessible directly
from M ,
the set U = V \ (M ∪R) of nodes that
have not yet been considered.
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Algorithm Dijkstra(G, s)
Input: Positively weighted Graph G = (V,E, c), starting point s ∈ V ,
Output: Minimal weights d of the shortest paths and corresponding predecessor

node for each node.

foreach u ∈ V do
ds[u]←∞; πs[u]← null

ds[s]← 0; R← {s}
while R 6= ∅ do

u← ExtractMin(R)
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
R← R ∪ {v}
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Example
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Implementation: Data Structure for R?
Required operations:

Insert (add to R)
ExtractMin (over R) and DecreaseKey (Update in R)
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
if v ∈ R then

DecreaseKey(R, v) // Update of a d(v) in the heap of R
else

R← R ∪ {v} // Update of d(v) in the heap of R

MinHeap!
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DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap (i.e. array index of element in the heap)?

alternative (a): Store position at the nodes
alternative (b): Hashtable of the nodes
alternative (c): re-insert node each time after update-operation and mark
it as visited ("deleted") once extracted (Lazy Deletion)
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Runtime Dijkstra

n := |V |, m := |E|

n× ExtractMin: O(n log n)
m× Insert or DecreaseKey: O(m log |V |)
1× Init: O(n)
Overal: O((n+m) log n). for connected graphs: O(m log n)
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Conclusion

n := |V |,m := |E|

problem method runtime dense sparse
m ∈ O(n2) m ∈ O(n)

c ≡ 1 BFS O(m+ n) O(n2) O(n)
DAG Top-Sort O(m+ n) O(n2) O(n)
c ≥ 0 Dijkstra O((m+ n) log n) O(n2 log n) O(n log n)
general Bellman-Ford1 O(m · n) O(n3) O(n2)

1will be covered later in class (dynamic programming)
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3. In-Class-Exercise (practical)
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Shortest Path in a Maze
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BFS
color = {s: Grey}
dist = {s:0}
predecessor = {s: None}
queue = Queue();
queue.put(s);
while not queue.empty():

u = queue.get()
for e in u.edges:

w = e.target
if w not in color: # color is white

color[w] = Grey
predecessor[w] = u
dist[w] = dist[u] + e.weight
queue.put(w)

color[u] = Black
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Solution Dijkstra
dist = {s:0}
predecessor = {s: None}
R = PriorityQueue()
R.put(PriorityEntry(0,s))
while not R.empty():

p = R.get()
u = p.data
if p.priority == dist[u]: # lazy deletion

for e in u.edges:
v = e.target
w = dist[u] + e.weight
if v not in dist or w < dist[v]:

dist[v] = w
predecessor[v] = u
R.put(PriorityEntry(w,v))
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Questions / Suggestions?
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