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Program Today

1 Repetition Lectures

2 String-Hashing and Computing with Modulo

3 In-Class-Exercises: Sliding Window
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Hashing well-done

Useful Hashing. . .

distributes the keys as uniformly as possible in the hash table.
avoids probing over long areas of used entries
(e.g. primary clustering).
avoids using the same probing sequence for keys with the same
hash value (e.g. secondary clustering).
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Hashing Examples

Insert the keys 25, 4, 17, 45 into the hash table, using the function
h(k) = k mod 7 and probing to the right, h(k) + s(j, k):

linear probing,
s(j, k) = j.
quadratic probing,
s(j, k) = (−1)j+1dj/2e2.
Double Hashing,
s(j, k) = j ·(1+(k mod 5)).
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Computing with Modulo

(a+ b) mod m = ((a mod m) + (b mod m)) mod m

(a− b) mod m = ((a mod m)− (b mod m) +m) mod m

(a · b) mod m = ((a mod m) · (b mod m)) mod m

Exercise: Compute

12746357 mod 11
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Computing Modulo

Exercise: Compute

12746357 mod 11

= (7 + 5 · 10 + 3 · 102 + 6 · 103 + 4 · 104 + 7 · 105 + 2 · 106 + 1 · 107) mod 11

= (7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) mod 11

= (7 + 6 + 3 + 5 + 4 + 4 + 2 + 10) mod 11

= 8 mod 11.

For the second equality we used the fact that 102 mod 11 = 1.
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Implementation Hash(String) in Java

hc,m(s) =

(
k−1∑
i=0

sk−1−i · ci
)

mod m

int ComputeHash(int C, int M, String s) {
int hash = 0;
for (int i = 0; i < s.length(); ++i){

hash = (C ∗ hash % M + s.charAt(i)) % M;
}
return hash;

}
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In-Class-Exercises: Sliding Window

Code-Expert→ code examples (7)

Given a String text of length n, we want to find the shortest
substring text[l, r], which contains each of the characters ‘a’, ‘b’
and ‘c’ at least once.

Brute-Force: Testing all n·(n−1)
2 substrings needs time O(n3).

Idea: Consider a fixed substring text[l, r]:
- If it is missing some characters→ increase substring length.
- If it contains all 3 characters→ decrease substring length.
Sliding Window Approach.
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In-Class-Exercises: Sliding Window

Sliding Window Approach:

Time: O(n).

In each step we enlarge the sliding window to the right or
decrease it on the left. Hence there can be at most 2n steps.
We hash a constant number of characters, hence HashMap
operations will take time O(1).
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Comparison to Rabin-Karp Exercise

Rabin-Karp: We are looking for a specific Substring “abc”, and not
just its individual Characters ‘a’, ‘b’, ‘c’!

Easier, since our Sliding Window always has the same length!
But at the same time more difficult, since the order of the
characters matters!
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Questions / Suggestions?
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