Informatik II

Übung 7

FS 2020

1

1 Repetition Lectures

2 String-Hashing and Computing with Modulo

3 In-Class-Exercises: Sliding Window

Useful Hashing...

- distributes the keys as uniformly as possible in the hash table.
- avoids probing over long areas of used entries (e.g. primary clustering).
- avoids using the same probing sequence for keys with the same hash value (e.g. secondary clustering).

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2.$
- Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2.$
- Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2.$
- Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2.$
- Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2.$
- Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2.$
- Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$

Insert the keys 25, 4, 17, 45 into the hash table, using the function $h(k) = k \mod 7$ and probing to the right, h(k) + s(j, k):

linear probing, 25 45 17 4 s(j,k) = j. quadratic probing, 25 4 $s(j,k) = (-1)^{j+1} [j/2]^2.$ Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$ 0 2 3 4 5 6

Insert the keys 25, 4, 17, 45 into the hash table, using the function $h(k) = k \mod 7$ and probing to the right, h(k) + s(j, k):

linear probing, s(j,k) = j. quadratic probing, $s(j,k) = (-1)^{j+1} [j/2]^2.$ Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2.$
- Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$

			17	25	4	45
		45	17	25	4	
0	1	2	3	4	5	6

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2.$
- Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$

			17	25	4	45
		45	17	25	4	
				25		
0	1	2	3	4	5	6

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2.$
- Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$

			17	25	4	45
		45	17	25	4	
		4		25		
0	1	2	3	4	5	6

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2.$
- Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$

			17	25	4	45
		45	17	25	4	
		4	17	25		
0	1	2	3	4	5	6

- linear probing, s(j,k) = j.
- quadratic probing, $s(j,k) = (-1)^{j+1} \lceil j/2 \rceil^2.$
- Double Hashing, $s(j,k) = j \cdot (1 + (k \mod 5)).$

			17	25	4	45
		45	17	25	4	
		4	17	25	45	
0	1	2	3	4	5	6

Computing with Modulo

$$(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$$
$$(a-b) \mod m = ((a \mod m) - (b \mod m) + m) \mod m$$
$$(a \cdot b) \mod m = ((a \mod m) \cdot (b \mod m)) \mod m$$

Exercise: Compute

$12746357 \mod 11$

Computing Modulo

Exercise: Compute

 $12746357 \bmod 11$

Computing Modulo

Exercise: Compute

 $12746357 \bmod 11$

 $= (7 + 5 \cdot 10 + 3 \cdot 10^2 + 6 \cdot 10^3 + 4 \cdot 10^4 + 7 \cdot 10^5 + 2 \cdot 10^6 + 1 \cdot 10^7) \mod 11$

Exercise: Compute

 $12746357 \bmod 11$

$$= (7 + 5 \cdot 10 + 3 \cdot 10^2 + 6 \cdot 10^3 + 4 \cdot 10^4 + 7 \cdot 10^5 + 2 \cdot 10^6 + 1 \cdot 10^7) \mod 11$$

= (7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) mod 11

For the second equality we used the fact that $10^2 \mod 11 = 1$.

Exercise: Compute

 $12746357 \bmod 11$

$$= (7 + 5 \cdot 10 + 3 \cdot 10^{2} + 6 \cdot 10^{3} + 4 \cdot 10^{4} + 7 \cdot 10^{5} + 2 \cdot 10^{6} + 1 \cdot 10^{7}) \mod 11$$

= (7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) mod 11
= (7 + 6 + 3 + 5 + 4 + 4 + 2 + 10) mod 11

For the second equality we used the fact that $10^2 \mod 11 = 1$.

Exercise: Compute

 $12746357 \bmod 11$

$$= (7 + 5 \cdot 10 + 3 \cdot 10^{2} + 6 \cdot 10^{3} + 4 \cdot 10^{4} + 7 \cdot 10^{5} + 2 \cdot 10^{6} + 1 \cdot 10^{7}) \mod 11$$

= (7 + 50 + 3 + 60 + 4 + 70 + 2 + 10) mod 11
= (7 + 6 + 3 + 5 + 4 + 4 + 2 + 10) mod 11
= 8 mod 11.

For the second equality we used the fact that $10^2 \mod 11 = 1$.

Implementation Hash(String) in Java

$$h_{c,m}(s) = \left(\sum_{i=0}^{k-1} s_{k-1-i} \cdot c^i\right) \mod m$$

```
int ComputeHash(int C, int M, String s) {
    int hash = 0;
    for (int i = 0; i < s.length(); ++i){
        hash = (C * hash % M + s.charAt(i)) % M;
    }
    return hash;
}</pre>
```

In-Class-Exercises: Sliding Window

Code-Expert \rightarrow code examples (7)

Given a String text of length n, we want to find the shortest substring text[l, r], which contains each of the characters 'a', 'b' and 'c' at least once.

In-Class-Exercises: Sliding Window

Code-Expert \rightarrow code examples (7)

Given a String text of length n, we want to find the shortest substring text[l, r], which contains each of the characters 'a', 'b' and 'c' at least once.

Brute-Force: Testing all $\frac{n \cdot (n-1)}{2}$ substrings needs time $\mathcal{O}(n^3)$.

Code-Expert \rightarrow code examples (7)

Given a String text of length n, we want to find the shortest substring text[l, r], which contains each of the characters 'a', 'b' and 'c' at least once.

- Brute-Force: Testing all $\frac{n \cdot (n-1)}{2}$ substrings needs time $\mathcal{O}(n^3)$.
- Idea: Consider a fixed substring text[l, r]:
 - If it is missing some characters \rightarrow increase substring length.
 - If it contains all 3 characters \rightarrow decrease substring length.

Code-Expert \rightarrow code examples (7)

Given a String text of length n, we want to find the shortest substring text[l, r], which contains each of the characters 'a', 'b' and 'c' at least once.

- Brute-Force: Testing all $\frac{n \cdot (n-1)}{2}$ substrings needs time $\mathcal{O}(n^3)$.
- Idea: Consider a fixed substring text[l, r]:
 - If it is missing some characters \rightarrow increase substring length.
 - If it contains all 3 characters \rightarrow decrease substring length.
- Sliding Window Approach.

In-Class-Exercises: Sliding Window

Sliding Window Approach:

Sliding Window Approach:

Time: $\mathcal{O}(n)$.

- In each step we enlarge the sliding window to the right or decrease it on the left. Hence there can be at most 2n steps.
- We hash a constant number of characters, hence HashMap operations will take time $\mathcal{O}(1)$.

Rabin-Karp: We are looking for a specific Substring "abc", and not just its individual Characters 'a', 'b', 'c'!

- Easier, since our Sliding Window always has the same length!
- But at the same time more difficult, since the order of the characters matters!

Questions / Suggestions?