
Informatik II

Übung 6

FS 2020

1



Program Today

1 Recap Binary Trees

2 Repetition Lectures

AVL Condition

AVL Insert

3 In-Class-Exercises

2



Comparison of binary Trees

Search trees Heaps
Min- / Max- Heap

Balanced trees
AVL, red-black tree

in Java: PriorityQueue TreeSet

3

4

5

7

9

16

1

2

235

7 9

16

1

4

2

3

4

5

7

9

16

1

Insertion O(h(T )) O(log n) O(log n)
Search O(h(T )) O(n) (!!) O(log n)

Deletion O(h(T )) Search + O(log n) O(log n)

Recall: O(log n)≤ O(h(T ))≤ O(n)

3

https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html


Comparison of binary Trees

Search trees Heaps
Min- / Max- Heap

Balanced trees
AVL, red-black tree

in Java: PriorityQueue TreeSet

3

4

5

7

9

16

1

2

235

7 9

16

1

4

2

3

4

5

7

9

16

1

Insertion O(h(T )) O(log n) O(log n)
Search O(h(T )) O(n) (!!) O(log n)

Deletion O(h(T )) Search + O(log n) O(log n)
Recall: O(log n)≤ O(h(T ))≤ O(n)

3

https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html


AVL Condition

AVL Condition: for eacn node v of a
tree bal(v) ∈ {−1, 0, 1}

v

Tl(v)

Tr(v)

h h+ 1

h+ 2

4



Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Finished in both cases because the subtree height did not change

5



Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)

6



upin(p) - invariant

When upin(p) is called it holds that

the subtree from p is grown and
bal(p) ∈ {−1,+1}

7



upin(p)

Assumption: p is left son of pp1

=⇒

pp +1 pp 0

p p

case 1: bal(pp) = +1, done.

=⇒

pp 0 pp −1

p p

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

1If p is a right son: symmetric cases with exchange of +1 and −1
8



upin(p)
Assumption: p is left son of pp

pp −1

p

case 3: bal(pp) = −1,

This case is problematic: adding n to the subtree from pp has
violated the AVL-condition. Re-balance!

Two cases bal(p) = −1, bal(p) = +1
9



Rotations
case 1.1 bal(p) = −1. 2

y

x

t1

t2

t3

pp −2

p −1

h

h− 1

h− 1

h+ 2 h

=⇒
rotation

right

x

y

t1 t2 t3

pp 0

p 0

h h− 1 h− 1

h+ 1 h+ 1

2p right son: ⇒ bal(pp) = bal(p) = +1, left rotation
10



Rotations
case 1.1 bal(p) = −1. 3

z

x

y

t1 t2 t3

t4

pp −2

p +1

h −1/+ 1

h− 1

h− 1

h− 2

h− 2

h− 1

h− 1

h+ 2 h

=⇒
double
rotation
left-right

y

x z

t1
t2 t3

t4

pp 0

0/− 1 +1/0

h− 1 h− 1

h− 2

h− 2

h− 1

h− 1

h+ 1

3p right son⇒ bal(pp) = +1, bal(p) = −1, double rotation right left
11



Quiz

In the following AVL tree, insert key 12 and rebalance (as shown in
class). What does the AVL tree look like after the operation that has
been shown in class?

30

10

3

1

17

14 19

50

40 60

12



Solution

17

10

3

1

14

12

30

19 50

40 60

13



3. In-Class-Exercises

14



1. Recursion in Trees

Exercise:
Implement a recursive function to compute the height and weight of
(a node of) of a binary search treee

[Code Expert, Code Examples 6]

15



2. Augment a Tree

Exercise:
Augment the nodes n of a binary search tree with their heights
n.height. Make sure the height stays consistent when nodes are
inserted.

[Code Expert, Code Examples 6]

16



Questions / Suggestions?

17


	Recap Binary Trees
	Repetition Lectures
	AVL Condition
	AVL Insert

	In-Class-Exercises

