Informatik Il

Ubung 12

FS 2020

Program Today

Repetition theory

In-Class Exercise

1. Repetition theory

Dynamic Programming: Idea

m Divide a complex problem into a reasonable number of
sub-problems

m The solution of the sub-problems will be used to solve the more
complex problem

m |dentical problems will be computed only once

Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by
utilizing the solutions of sub-problems. The problem provides
optimal substructure.

Divide-And-Conquer algorithms (such as Mergesort):
sub-problems are independent; their solutions are required only
once in the algorithm.

DP: sub-problems are dependent. The problem is said to have

overlapping sub-problems that are required multiple-times in the
algorithm.

In order to avoid redundant computations, results are tabulated.
For sub-problems there must not be any circular dependencies.

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table:

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
m Computation of an entry:

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?

m Calculation order:

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?

m Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?

m Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?

m Extracting the solution:

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?

m Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?

m Extracting the solution: How can the final solution be
extracted once the table has been filled?

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?

m Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?

m Extracting the solution: How can the final solution be
extracted once the table has been filled?

2. In-Class Exercise

Longest Ascending Sequence in a Matrix

Longest ascending Sequence in matrix

Given n x m matrix A:

9 |27 142 |41 |48
3539, 8 | 3|5
12149 2 |38 | 4
15147129 |28 | 6
191 1 (25|33 |10

Longest ascending Sequence in matrix

Given n x m matrix A:

9 |27 42 41 |48
3539, 8| 3|5
12149 | 2 |38 4
15147129 28| 6
191 1 25|33 |10

Wanted longest ascending sequence:

4,6, 28,29, 47, 49

Definition of the DP table

m What are the dimensions of the table?

Definition of the DP table

m What are the dimensions of the table?

BENXM

Definition of the DP table

m What are the dimensions of the table?

mn X m(x2)

Definition of the DP table

m What are the dimensions of the table?
mE N X m(><2)

m What is the meaning of each entry?

Definition of the DP table

m What are the dimensions of the table?
mE N X m(><2)
m What is the meaning of each entry?

m In T'[z][y] is the length of the longest ascending sequence
that ends in Alz]|[y]

m In S[z][y] are the coordinates of the predecessor in
ascending sequence (if exists)

Computation of an entry

m How can an entry be computed from the values of other
entries? Which entries do not depend on others?

Computation of an entry

m How can an entry be computed from the values of other
entries? Which entries do not depend on others?

m Consider neighbors with smaller entry in A

Computation of an entry

m How can an entry be computed from the values of other
entries? Which entries do not depend on others?

m Consider neighbors with smaller entry in A
m From the smaller entries choose entry with the largest
entry in T

Computation of an entry

m How can an entry be computed from the values of other
entries? Which entries do not depend on others?

m Consider neighbors with smaller entry in A

m From the smaller entries choose entry with the largest
entry in T

m Update 7" and S. (S gets coordinate from selected
neighbor, T" gets value from selected neighbor increased
by one)

Computation of an entry

m How can an entry be computed from the values of other
entries? Which entries do not depend on others?

m Consider neighbors with smaller entry in A

m From the smaller entries choose entry with the largest
entry in T

m Update 7" and S. (S gets coordinate from selected
neighbor, T" gets value from selected neighbor increased
by one)

Calculation order

m In which order can entries be computed so that values needed
for each entry have been determined in previous steps?

Calculation order

m In which order can entries be computed so that values needed
for each entry have been determined in previous steps?

m Bottom-Up: Start with
smallest element in A and
so on. (Means that one has
to sort A)

Calculation order

m In which order can entries be computed so that values needed
for each entry have been determined in previous steps?

m Bottom-Up: Start with m Recursively: Arbitrary order,
smallest element in A and if entry is already computed
so on. (Means that one has skip it otherwise compute for

to sort A) smaller neighbor recursively.

Extracting the solution

m How can the final solution be exiracted once the table has been
filled?

Extracting the solution

m How can the final solution be exiracted once the table has been
filled?

m Consider all entries to find one with a longest sequence.
From there, we can reconstruct the solution by following
the corresponding predecessors.

Task

Implement a DP solution in the prepared CodeExpert program.

Questions / Suggestions?

	Repetition theory
	In-Class Exercise

