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1. Repetition theory



Dynamic Programming: Idea

m Divide a complex problem into a reasonable number of
sub-problems

m The solution of the sub-problems will be used to solve the more
complex problem

m |dentical problems will be computed only once



Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by
utilizing the solutions of sub-problems. The problem provides
optimal substructure.

Divide-And-Conquer algorithms (such as Mergesort):
sub-problems are independent; their solutions are required only
once in the algorithm.

DP: sub-problems are dependent. The problem is said to have

overlapping sub-problems that are required multiple-times in the
algorithm.

In order to avoid redundant computations, results are tabulated.
For sub-problems there must not be any circular dependencies.
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2. In-Class Exercise

Longest Ascending Sequence in a Matrix
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Longest ascending Sequence in matrix

Given n x m matrix A:

9 |27 42 41 |48
3539, 8| 3|5
12149 | 2 |38 4
15147129 28| 6
191 1 25|33 |10

Wanted longest ascending sequence:

4,6, 28,29, 47, 49
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Definition of the DP table

m What are the dimensions of the table?
mE N X m(><2)
m What is the meaning of each entry?

m In T'[z][y] is the length of the longest ascending sequence
that ends in Alz]|[y]

m In S[z][y] are the coordinates of the predecessor in
ascending sequence (if exists)
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Calculation order

m In which order can entries be computed so that values needed
for each entry have been determined in previous steps?

m Bottom-Up: Start with m Recursively: Arbitrary order,
smallest element in A and if entry is already computed
so on. (Means that one has skip it otherwise compute for

to sort A) smaller neighbor recursively.
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Extracting the solution

m How can the final solution be exiracted once the table has been
filled?

m Consider all entries to find one with a longest sequence.
From there, we can reconstruct the solution by following
the corresponding predecessors.



Task

Implement a DP solution in the prepared CodeExpert program.



Questions / Suggestions?
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