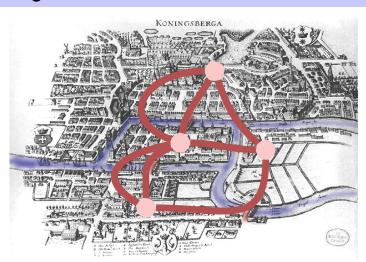
13. Graphs

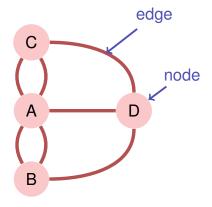
Notation, Representation, Graph Traversal (DFS, BFS), Topological Sorting [Ottman/Widmayer, Kap. 9.1 - 9.4, Cormen et al, Kap. 22]

Königsberg 1736



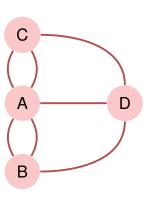
307

[Multi]Graph



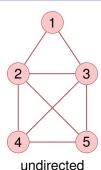
Cycles

- Is there a cycle through the town (the graph) that uses each bridge (each edge) exactly once?
- Euler (1736): no.
- Such a *cycle* is called *Eulerian path*.
- Eulerian path ⇔ each node provides an even number of edges (each node is of an even degree).

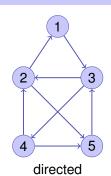


^{&#}x27;⇒" is straightforward, "⇐" ist a bit more difficult but still elementary.

Notation



$$\begin{array}{ll} V = & \{1,2,3,4,5\} \\ E = & \{\{1,2\},\{1,3\},\{2,3\},\{2,4\}, \\ & \{2,5\},\{3,4\},\{3,5\},\{4,5\}\} \end{array} \\ V = & \{1,2,3,4,5\} \\ E = & \{(1,3),(2,1),(2,5),(3,2), \\ & \{3,4\},(4,2),(4,5),(5,3)\} \end{array}$$



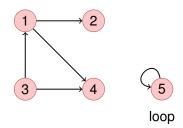
$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1, 3), (2, 1), (2, 5), (3, 2), (5\}, \{4, 5\}\}$$

$$(3, 4), (4, 2), (4, 5), (5, 3)\}$$

Notation

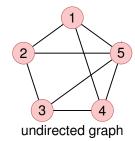
A *directed graph* consists of a set $V = \{v_1, \dots, v_n\}$ of nodes (*Vertices*) and a set $E \subseteq V \times V$ of Edges. The same edges may not be contained more than once.



311

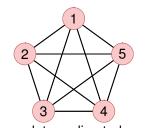
Notation

An *undirected graph* consists of a set $V = \{v_1, \dots, v_n\}$ of nodes a and a set $E \subseteq \{\{u,v\}|u,v\in V\}$ of edges. Edges may bot be contained more than once.²²



Notation

An undirected graph G = (V, E) without loops where E comprises all edges between pairwise different nodes is called *complete*.

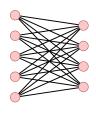


a complete undirected graph

²²As opposed to the introductory example – it is then called multi-graph.

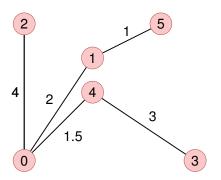
Notation

A graph where V can be partitioned into disjoint sets U and W such that each $e \in E$ provides a node in U and a node in W is called bipartite.



Notation

A weighted graph G = (V, E, c) is a graph G = (V, E) with an edge *weight function* $c: E \to \mathbb{R}$. c(e) is called *weight* of the edge e.

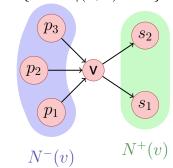


315

Notation

For directed graphs G = (V, E)

- $w \in V$ is called adjacent to $v \in V$, if $(v, w) \in E$
- Predecessors of $v \in V$: $N^-(v) := \{u \in V | (u, v) \in E\}$. Successors: $N^+(v) := \{u \in V | (v, u) \in E\}$



Notation

For directed graphs G = (V, E)

■ *In-Degree*: $deg^{-}(v) = |N^{-}(v)|$, Out-Degree: $\deg^+(v) = |N^+(v)|$

$$\deg^-(v) = 3, \deg^+(v) = 2 \qquad \deg^-(w) = 1, \deg^+(w) = 1$$

$$\deg^-(w) = 1, \deg^+(w) = 1$$

Notation

For undirected graphs G = (V, E):

- $w \in V$ is called *adjacent* to $v \in V$, if $\{v, w\} \in E$
- Neighbourhood of $v \in V$: $N(v) = \{w \in V | \{v, w\} \in E\}$
- *Degree* of v: deg(v) = |N(v)| with a special case for the loops: increase the degree by 2.

$$\deg(w) = 2$$

Relationship between node degrees and number of edges

For each graph G = (V, E) it holds

- $\sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v) = |E|$, for G directed
- $\sum_{v \in V} \deg(v) = 2|E|$, for G undirected.

319

Paths

- *Path*: a sequence of nodes $\langle v_1, \dots, v_{k+1} \rangle$ such that for each $i \in \{1 \dots k\}$ there is an edge from v_i to v_{i+1} .
- **Length** of a path: number of contained edges k.
- Weight of a path (in weighted graphs): $\sum_{i=1}^k c((v_i, v_{i+1}))$ (bzw. $\sum_{i=1}^k c(\{v_i, v_{i+1}\})$)
- Simple path: path without repeating vertices

Connectedness

- An undirected graph is called *connected*, if for each each pair $v, w \in V$ there is a connecting path.
- A directed graph is called *strongly connected*, if for each pair $v, w \in V$ there is a connecting path.
- A directed graph is called weakly connected, if the corresponding undirected graph is connected.

Simple Observations

Cycles

• generally: $0 \le |E| \in \mathcal{O}(|V|^2)$

lacksquare connected graph: $|E| \in \Omega(|V|)$

• complete graph: $|E| = \frac{|V| \cdot (|V| - 1)}{2}$ (undirected)

■ Maximally $|E| = |V|^2$ (directed), $|E| = \frac{|V| \cdot (|V| + 1)}{2}$ (undirected)

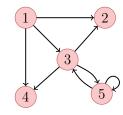
- **Cycle**: path $\langle v_1, \dots, v_{k+1} \rangle$ with $v_1 = v_{k+1}$
- **Simple cycle:** Cycle with pairwise different v_1, \ldots, v_k , that does not use an edge more than once.
- Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2 (loops have length 1)

323

Representation using a Matrix

Graph G=(V,E) with nodes v_1,\ldots,v_n stored as *adjacency matrix* $A_G=(a_{ij})_{1\leq i,j\leq n}$ with entries from $\{0,1\}$. $a_{ij}=1$ if and only if edge from v_i to v_j .

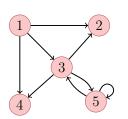


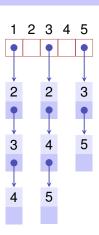
$$\left(\begin{array}{cccccc}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)$$

Memory consumption $\Theta(|V|^2)$. A_G is symmetric, if G undirected.

Representation with a List

Many graphs G=(V,E) with nodes v_1,\ldots,v_n provide much less than n^2 edges. Representation with *adjacency list*: Array $A[1],\ldots,A[n]$, A_i comprises a linked list of nodes in $N^+(v_i)$.



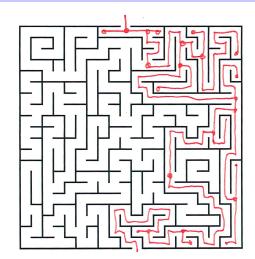


Memory Consumption $\Theta(|V| + |E|)$.

Runtimes of simple Operations

Operation	Matrix	List
Find neighbours/successors of $v \in V$	$\Theta(n)$	$\Theta(\deg^+ v)$
$\text{find } v \in V \text{ without neighbour/successor}$	$\Theta(n^2)$	$\Theta(n)$
$(u,v) \in E$?	$\Theta(1)$	$\Theta(\deg^+ v)$
Insert edge	$\Theta(1)$	$\Theta(1)$
Delete edge	$\Theta(1)$	$\Theta(\deg^+ v)$

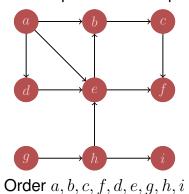
Depth First Search

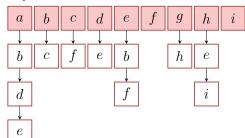


327

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.





Colors

Conceptual coloring of nodes

- white: node has not been discovered yet.
- grey: node has been discovered and is marked for traversal / being processed.
- **black:** node was discovered and entirely processed.

Algorithm Depth First visit DFS-Visit(G, v)

Depth First Search starting from node v. Running time (without recursion): $\Theta(\deg^+ v)$

Algorithm Depth First visit DFS-Visit(*G***)**

Depth First Search for all nodes of a graph. Running time: $\Theta(|V| + \sum_{v \in V} (\deg^+(v) + 1)) = \Theta(|V| + |E|).$

331

Interpretation of the Colors

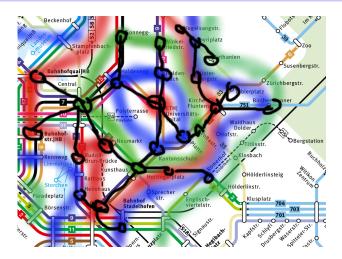
When traversing the graph, a tree (or Forest) is built. When nodes are discovered there are three cases

■ White node: new tree edge

■ Grey node: Zyklus ("back-egde")

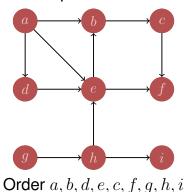
■ Black node: forward- / cross edge

Breadth First Search

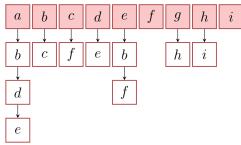


Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.







(Iterative) BFS-Visit(G, v)

```
\begin{array}{l} \textbf{Input:} \ \text{graph} \ G = (V, E) \\ \\ \text{Queue} \ Q \leftarrow \emptyset \\ v.color \leftarrow \text{grey} \\ \\ \text{enqueue}(Q, v) \\ \textbf{while} \ Q \neq \emptyset \ \textbf{do} \\ \\ w \leftarrow \text{dequeue}(Q) \\ \textbf{foreach} \ c \in N^+(w) \ \textbf{do} \\ \\ & \text{if} \ c.color = \text{white then} \\ \\ & c.color \leftarrow \text{grey} \\ \\ & \text{enqueue}(Q, c) \\ \\ \hline w.color \leftarrow \text{black} \\ \end{array}
```

Algorithm requires extra space of $\mathcal{O}(|V|)$.

335

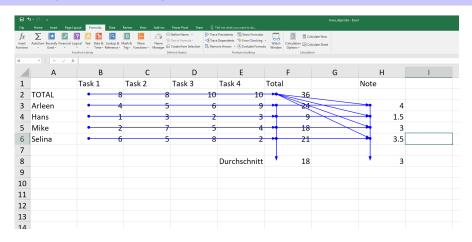
20

Main program BFS-Visit(G)

```
\begin{array}{l} \textbf{Input:} \  \, \mathsf{graph} \,\, G = (V,E) \\ \textbf{foreach} \,\, v \in V \,\, \textbf{do} \\ \quad \big\lfloor \,\, v.color \leftarrow \text{white} \\ \textbf{foreach} \,\, v \in V \,\, \textbf{do} \\ \quad \big\vert \,\, \  \, \mathsf{if} \,\, v.color = \text{white} \,\, \mathsf{then} \\ \quad \big\vert \,\, \  \, \mathsf{BFS-Visit}(\mathsf{G,v}) \end{array}
```

Breadth First Search for all nodes of a graph. Running time: $\Theta(|V| + |E|)$.

Topological Sorting



Evaluation Order?

Topological Sorting

(Counter-)Examples

Topological Sorting of an acyclic directed graph G = (V, E):

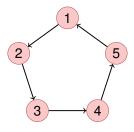
Bijective mapping

ord :
$$V \to \{1, ..., |V|\}$$

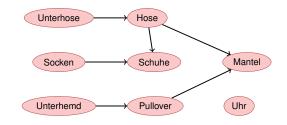
such that

$$\operatorname{ord}(v) < \operatorname{ord}(w) \ \forall \ (v, w) \in E.$$

Identify i with Element $v_i := \operatorname{ord}^1(i)$. Topological sorting $\widehat{=} \langle v_1, \dots, v_{|V|} \rangle$.



Cyclic graph: cannot be sorted topologically.



A possible toplogical sorting of the graph: Unterhemd.Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe

339

Observation

Theorem

A directed graph G=(V,E) permits a topological sorting if and only if it is acyclic.

Proof " \Rightarrow ": If G contains a cycle it cannot permit a topological sorting, because in a cycle $\langle v_{i_1}, \ldots, v_{i_m} \rangle$ it would hold that $v_{i_1} < \cdots < v_{i_m} < v_{i_1}$.

Inductive Proof Opposite Direction

- Base case (n = 1): Graph with a single node without loop can be sorted topologically, $setord(v_1) = 1$.
- \blacksquare Hypothesis: Graph with n nodes can be sorted topologically
- \blacksquare Step $(n \rightarrow n+1)$:
 - If G contains a node v_q with in-degree $\deg^-(v_q)=0$. Otherwise iteratively follow edges backwards after at most n+1 iterations a node would be revisited. Contradiction to the cycle-freeness.
 - 2 Graph without node v_q and without its edges can be topologically sorted by the hypothesis. Now use this sorting and set $\operatorname{ord}(v_i) \leftarrow \operatorname{ord}(v_i) + 1$ for all $i \neq q$ and set $\operatorname{ord}(v_q) \leftarrow 1$.

Preliminary Sketch of an Algorithm

Graph G = (V, E). $d \leftarrow 1$

- 1 Traverse backwards starting from any node until a node v_q with in-degree 0 is found.
- If no node with in-degree 0 found after n stepsm, then the graph has a cycle.
- set $\operatorname{ord}(v_q) \leftarrow d$.
- A Remove v_q and his edges from G.
- If $V \neq \emptyset$, then $d \leftarrow d+1$, go to step 1.

Worst case runtime: $\Theta(|V|^2)$.

Improvement

Idea?

Compute the in-degree of all nodes in advance and traverse the nodes with in-degree 0 while correcting the in-degrees of following nodes.

343

Algorithm Topological-Sort(*G*)

```
Input: graph G = (V, E).
```

Output: Topological sorting ord

Stack $S \leftarrow \emptyset$

foreach $v \in V$ do $A[v] \leftarrow 0$

foreach $(v, w) \in E$ **do** $A[w] \leftarrow A[w] + 1$ // Compute in-degrees

foreach $v \in V$ with A[v] = 0 do push(S, v) // Memorize nodes with in-degree

 $0 \\ i \leftarrow 1$

while $S \neq \emptyset$ do

 $v \leftarrow \mathsf{pop}(S); \ \mathrm{ord}[v] \leftarrow i; \ i \leftarrow i+1 \ // \ \mathsf{Choose} \ \mathsf{node} \ \mathsf{with} \ \mathsf{in-degree} \ \mathsf{0}$ foreach $(v,w) \in E \ \mathsf{do} \ // \ \mathsf{Decrease} \ \mathsf{in-degree} \ \mathsf{of} \ \mathsf{successors}$ $A[w] \leftarrow A[w] - 1$ if $A[w] = 0 \ \mathsf{then} \ \mathsf{push}(S,w)$

if i = |V| + 1 then return ord else return "Cycle Detected"

Algorithm Correctness

Theorem

345

Let G = (V, E) be a directed acyclic graph. Algorithm TopologicalSort(G) computes a topological sorting ord for G with runtime $\Theta(|V| + |E|)$.

Proof: follows from previous theorem:

- Decreasing the in-degree corresponds with node removal.
- In the algorithm it holds for each node v with A[v]=0 that either the node has in-degree 0 or that previously all predecessors have been assigned a value $\operatorname{ord}[u] \leftarrow i$ and thus $\operatorname{ord}[v] > \operatorname{ord}[u]$ for all predecessors u of v. Nodes are put to the stack only once.
- 3 Runtime: inspection of the algorithm (with some arguments like with graph traversal)

Algorithm Correctness

Theorem

Let G=(V,E) be a directed graph containing a cycle. Algorithm TopologicalSort(G) terminates within $\Theta(|V|+|E|)$ steps and detects a cycle.

Proof: let $\langle v_{i_1},\ldots,v_{i_k}\rangle$ be a cycle in G. In each step of the algorithm remains $A[v_{i_j}]\geq 1$ for all $j=1,\ldots,k$. Thus k nodes are never pushed on the stack und therefore at the end it holds that $i\leq V+1-k$.

The runtime of the second part of the algorithm can become shorter. But the computation of the in-degree costs already $\Theta(|V|+|E|)$.