13. Graphs

Notation, Representation, Graph Traversal (DFS, BFS), Topological
Sorting [Ottman/Widmayer, Kap. 9.1 - 9.4,Cormen et al, Kap. 22]

307

[Multi]Graph

edge

() _noce

309

Konigsberg 1736

KONINGSBERGA

Cycles

m Is there a cycle through the town (the
graph) that uses each bridge (each edge)
exactly once?

m Euler (1736): no.

m Such a cycle is called Eulerian path.

m Eulerian path < each node provides an
even number of edges (each node is of an
even degree).

‘=" is straightforward, “<=” ist a bit more difficult but still elementary.

308

310

Notation Notation

A directed graph consists of a set V' = {vy,...,v,} of nodes
(Vertices) and a set E C V x V of Edges. The same edges may not
be contained more than once.

undirected directed e‘ o QS)

V ={1,2,3,4,5} V ={1,2,3,4,5} |
E={{1,2},{1,3},{2.3},{2.4}, E={(1,3),(2.1),(2,5). (3,2). oop
{2,5},{3,4},{3,5},{4,5}} (3,4),(4,2),(4,5),(5,3)}
Notation Notation
An undirected graph consists of a set V' = {vy,...,v,} of nodes a

An undirected graph G = (V, E') without loops where E comprises

- . L . .
andaset I € {{u,v}|u,v € V} of edges. Edges may bot be all edges between pairwise different nodes is called complete.

contained more than once.??

a complete undirected graph

undirected graph

22 As opposed to the introductory example — it is then called multi-graph.
313 314

Notation Notation

A weighted graph G = (V, E, ¢) is a graph G = (V, E) with an edge

A graph where V' can be partitioned into disjoint sets U and W such weight function ¢ : E — R. c(e) is called weight of the edge e.
that each e € E provides a node in U and a node in Wis called

bipartite.

Notation Notation

For directed graphs G = (V, F)

m w e Vis called adjacentto v € V, if (v,w) € E For directed graphs G = (V, E)

n Predecesso_rs o+fv eV: N (v) :={ueV|(uv) e E}. m In-Degree: deg™ (v) = |[N~(v)],
Successors: N*(v) :=={u € V|(v,u) € E} Out-Degree: deg* (v) = [N (v)|

SWPC
(@ o v
deg™(v) = 3,deg"(v) =2 deg (w) =1, deg" (w) =1
(#)
N-(v) N*t(v)

317

Notation

For undirected graphs G = (V, E):
m w € Viscalled adjacenttov € V, if {v,w} € E

m Neighbourhoodof v € V: N(v) = {w € V|{v,w} € E}

m Degree of v: deg(v) = |N(v)| with a special case for the loops:
increase the degree by 2.

N @

deg(v) =5 deg(w) =2

Paths

m Path: a sequence of nodes (v, ..., v;41) such that for each
i€ {l...k}thereis an edge from v; to v;;1 .

m Length of a path: number of contained edges k.
m Weight of a path (in weighted graphs): Zle c((vi,vi11)) (bzw.
S elfvn v })

m Simple path: path without repeating vertices

319

321

Relationship between node degrees and number of
edges

For each graph G = (V, E) it holds

> ey deg™(v) = 37 oy deg™ (v) = |E|, for G directed
> ,er deg(v) = 2|E|, for G undirected.

320

Connectedness

m An undirected graph is called connected, if for eacheach pair
v,w € V there is a connecting path.

m A directed graph is called strongly connected, if for each pair
v,w € V there is a connecting path.

m A directed graph is called weakly connected, if the corresponding
undirected graph is connected.

322

Simple Observations

m generally: 0 < |[E| € O(|V]?)

m connected graph: |E| € Q(|V])

m complete graph: |E| = W (undirected)

m Maximally |E| = |V |? (directed),|E| = W (undirected)

323

Representation using a Matrix

Graph G = (V, E) with nodes v; . .., v, stored as adjacency matrix
A¢ = (aij)1<i j<n With entries from {0, 1}. a;; = 1 if and only if edge
from v; to v;.

O OO OO
SO = O =
_ o O O
SO = O =
_— O = O O

Memory consumption O(|V'|?). Ag is symmetric, if G undirected.

325

Cycles

m Cycle: path (v, ..

m Simple cycle: Cycle with pairwise different vy, ..
not use an edge more than once.

m Acyclic: graph without any cycles.

. ,Uk+1> with V1 = Vk41
., Uk, that does

Conclusion: undirected graphs cannot contain cycles with length 2
(loops have length 1)

324

Representation with a List
Many graphs G = (V,FE) with nodes

: 12345
v1,...,v, provide much less than n? []
edges. Representation with adjacency F F?
list: Array A[l],..., A[n|, A; comprises a 3
linked list of nodes in N (v;). I

5

Ar—0O® W0
Q<0 »h<~—0 I

Memory Consumption O(|V| + |E|).

Runtimes of simple Operations Depth First Search

Operation Matrix List I——I
Find neighbours/successorsof v € V. ©(n) ©O(deg” v) | - I
find v € V without neighbour/successor ©(n?) ©O(n) —:;
(u,v) € E? O(1) O(deg v) |
Insert edge (1) ©() |_ |:|_
Delete edge O(1) O(deg’ v) (H
Il

327

Graph Traversal: Depth First Search Colors

Follow the path into its depth until nothing is left to visit.

0 I Adjazenzliste Conceptual coloring of nodes
g

bilcl|d
L4

c| fle

! m white: node has not been discovered yet.

m grey: node has been discovered and is marked for traversal /
being processed.

m black: node was discovered and entirely processed.

!
S fe— O e S

SR S e O

D XU S R

Order a,b,c, f,d,e, g, h,i

329

Algorithm Depth First visit DFS-Visit(G', v)

Input: graph G = (V, E'), Knoten v.

v.color < grey
foreach w € N*(v) do

if w.color = white then
. DFS-Visit(G, w)

v.color < black

Depth First Search starting from node v. Running time (without
recursion): ©(deg™ v)

331

Interpretation of the Colors

When traversing the graph, a tree (or Forest) is built. When nodes
are discovered there are three cases

m White node: new tree edge
m Grey node: Zyklus (“back-egde”)
m Black node: forward- / cross edge

333

Algorithm Depth First visit DFS-Visit(G)

Input: graph G = (V, E)

foreach v € V do
L v.color + white

foreach v € V do

if v.color = white then
. DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
O(IV]+ X er(deg™(v) + 1)) = O(V| + | E]).

332

Breadth First Search

334

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

SR

e S e D

Adjazenzliste
bilcld /
Lol
c| fle

Order a,b,d,e,c, f, g, h,1

S RS o BRSO L (IS

Main program BFS-Visit(G)

Input: graph G = (V, E)
foreach v € V do

‘ v.color <+ white

foreach v € V do

if v.color = white then
. BFS-Visit(G,v)

Breadth First Search for all nodes of a graph. Running time:
(V] +|£]).

335

337

(Iterative) BFS-Visit(G, v)

Input: graph G = (V, E)
Queue Q <+ 0

v.color < grey
enqueue(Q, v)
while Q # () do
w < dequeue(Q)
foreach c € N*(w) do
if c.color = white then
L c.color + grey

enqueue(Q, ¢)

w.color < black

Algorithm requires extra space of O(|V]).

Topological Sorting

B oo -
re Hom et
L+
| A ey
=

el
=} B @
" o e

A B C D E F G H
1 Task 1 Task 2 Task 3 Task 4 Total Note
2 |TOTAL 8 8 10 16
3 Arleen % 5 S 4
4 Hans T 3 3 ﬁz\q\ 1.5
5 Mike 4 18 3
6 |Selina & 5 8 35 |
7
8 Durchschnitt 18 3

9
10
11
12
13
14

Evaluation Order?

336

338

Topological Sorting

Topological Sorting of an acyclic directed graph G = (V, E):

Bijective mapping
ord : V = {1,...,|V]}

such that
ord(v) < ord(w) V (v,w) € E.

Identify ¢ with Element v; := ord' (). Topological sorting =

<U1, Ce 7U|V\>'

339

Observation

A directed graph G = (V, E) permits a topological sorting if and only
if it is acyclic.

Proof “=":
sorting, because in a cycle (v;,,..
Vi, < o0 <, < V.

If G contains a cycle it cannot permit a topological
., v;,.) it would hold that

341

(Counter-)Examples

Cyclic graph: cannot be sorted topologically.

A possible toplogical sorting of the graph:
Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe

340

Inductive Proof Opposite Direction

m Base case (n = 1): Graph with a single node without loop can be
sorted topologically, setord(v;) = 1.

m Hypothesis: Graph with n nodes can be sorted topologically
m Step (n - n + 1):

G contains a node v, with in-degree deg™ (v,) = 0. Otherwise iteratively
follow edges backwards — after at most n + 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

Graph without node v, and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(v;) < ord(v;) + 1 for
all i # ¢ and set ord(v,) < 1.

342

Preliminary Sketch of an Algorithm

Graph G = (V,E). d + 1
| Traverse backwards starting from any node until a node v, with
in-degree 0 is found.

If no node with in-degree 0 found after n stepsm, then the graph
has a cycle.

Set ord(v,) + d.
Remove v, and his edges from G.
IfV #0,thend < d+1, goto step 1.

Worst case runtime: O(|V]?).

343

Algorithm Topological-Sort(()

Input: graph G = (V, E).
Output: Topological sorting ord

Stack S < 0
foreach v € V do Afv| + 0
foreach (v,w) € E do A[w] <— Ajw]+ 1 // Compute in-degrees
foreach v € V with A[v] = 0 do push(S,v) // Memorize nodes with in-degree
0
141
while S # () do
v < pop(S); ord[v] <—i; i <= i+ 1 // Choose node with in-degree 0
foreach (v, w) € F do // Decrease in-degree of successors
Alw] + Alw] —1
if Alw] =0 then push(S,w)

if ¢ = |V| + 1 then return ord else return “Cycle Detected”

345

Improvement

Idea?

Compute the in-degree of all nodes in advance and traverse the
nodes with in-degree 0 while correcting the in-degrees of following
nodes.

344

Algorithm Correctness

Let G = (V, E) be a directed acyclic graph. Algorithm
TopologicalSort(G) computes a topological sorting ord for G with
runtime O(|V| + | E|).

Proof: follows from previous theorem:

Decreasing the in-degree corresponds with node removal.

In the algorithm it holds for each node v with A[v] = 0 that either the node
has in-degree 0 or that previously all predecessors have been assigned a
value ord[u] <— ¢ and thus ord[v] > ord[u] for all predecessors u of v. Nodes
are put to the stack only once.

Runtime: inspection of the algorithm (with some arguments like with graph
traversal) 346

Algorithm Correctness

Let G = (V, E) be a directed graph containing a cycle. Algorithm
TopologicalSort(G) terminates within ©(|V'| + |E|) steps and detects

a cycle.

Proof: let (v;,, ..., v;,) be acycle in G. In each step of the algorithm remains
Alv;] > 1forall j =1,..., k. Thus k nodes are never pushed on the stack und

therefore at the end it holds that: < V' + 1 — k.

The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already O(|V| + |E]).

347

