12. Dynamische Programmierung

Memoisieren, Optimale Substruktur, Überlappende Teilprobleme, Abhängigkeiten, Allgemeines Vorgehen. Beispiele: Schneiden von Eisenstangen, Kaninchen, Editierdistanz

[Ottman/Widmayer, Kap. 7.1, 7.4, Cormen et al, Kap. 15]

Fibonacci Zahlen

$$F_n := egin{cases} n & \text{wenn } n < 2 \ F_{n-1} + F_{n-2} & \text{wenn } n \geq 2. \end{cases}$$

Analyse: warum ist der rekursive Algorithmus so langsam.

260

Algorithmus FibonacciRecursive(n)

Analyse

T(n): Anzahl der ausgeführten Operationen.

 $n = 0, 1: T(n) = \Theta(1)$

 $n \ge 2$: T(n) = T(n-2) + T(n-1) + c.

 $T(n) = T(n-2) + T(n-1) + c \ge 2T(n-2) + c \ge 2^{n/2}c' = (\sqrt{2})^n c'$

Algorithmus ist *exponentiell* (!) in n.

Grund, visualisiert

F_{45} F_{44} F_{43} F_{43} F_{43} F_{44} F_{43} F_{44} F_{43} F_{44} F_{45} F

Knoten mit denselben Werten werden (zu) oft ausgewertet.

Memoization

Memoization (sic) Abspeichern von Zwischenergebnissen.

- Bevor ein Teilproblem gelöst wird, wird Existenz eines entsprechenden Zwischenergebnis geprüft.
- Existiert ein gespeichertes Zwischenergebnis bereits, so wird dieses verwendet.
- Andernfalls wird der Algorithmus ausgeführt und das Ergebnis wird entsprechend gespeichert.

264

Memoization bei Fibonacci

F_{46} F_{45} F_{44} F_{43}

Rechteckige Knoten wurden bereits ausgewertet.

Algorithmus FibonacciMemoization(n)

```
\begin{array}{l} \textbf{Input:} \ n \geq 0 \\ \textbf{Output:} \ n\text{-te Fibonacci Zahl} \\ \textbf{if} \ n \leq 2 \ \textbf{then} \\ \mid \ f \leftarrow 1 \\ \textbf{else if } \ \exists \mathsf{memo}[n] \ \textbf{then} \\ \mid \ f \leftarrow \mathsf{memo}[n] \\ \textbf{else} \\ \mid \ f \leftarrow \mathsf{FibonacciMemoization}(n-1) + \mathsf{FibonacciMemoization}(n-2) \\ \mid \ \mathsf{memo}[n] \leftarrow f \\ \textbf{return} \ f \end{array}
```

Analyse

Berechnungsaufwand:

$$T(n) = T(n-1) + c = \dots = \mathcal{O}(n).$$

denn nach dem Aufruf von f(n-1) wurde f(n-2) bereits berechnet.

Das lässt sich auch so sehen: Für jedes n wird f(n) maximal einmal rekursiv berechnet. Laufzeitkosten: n Aufrufe mal $\Theta(1)$ Kosten pro Aufruf $n\cdot c\in \Theta(n)$. Die Rekursion verschwindet aus der Berechnung der Laufzeit.

Algorithmus benötigt $\Theta(n)$ Speicher.¹⁹

Genauer hingesehen ...

 \dots berechnet der Algorithmus der Reihe nach die Werte $F_1,\,F_2,\,F_3,\,$

... verkleidet im *Top-Down* Ansatz der Rekursion.

Man kann den Algorithmus auch gleich *Bottom-Up* hinschreiben. Das ist charakteristisch für die *dynamische Programmierung*.

268

Algorithmus FibonacciBottomUp(n)

Input: $n \ge 0$

Output: n-te Fibonacci Zahl

Dynamische Programmierung: Idee

- Aufteilen eines komplexen Problems in eine vernünftige Anzahl kleinerer Teilprobleme
- Die Lösung der Teilprobleme wird zur Lösung des komplexeren Problems verwendet
- Identische Teilprobleme werden nur einmal gerechnet

¹⁹ Allerdings benötigt der naive Algorithmus auch $\Theta(n)$ Speicher für die Rekursionsverwaltung.

Dynamische Programmierung: Konsequenz

Identische Teilprobleme werden nur einmal gerechnet

Resultate werden zwischengespeichert

Wir tauschen Laufzeit gegen Speicherplatz

Dynamic Programming: Beschreibung

- Verwalte *DP-Tabelle* mit Information zu den Teilproblemen. Dimension der Tabelle? Bedeutung der Einträge?
- Berechnung der Randfälle. Welche Einträge hängen nicht von anderen ab?
- **Berechnungsreihenfolge** bestimen. In welcher Reihenfolge können Einträge berechnet werden, so dass benötigte Einträge jeweils vorhanden sind?
- 4 Auslesen der Lösung. Wie kann sich Lösung aus der Tabelle konstruieren lassen?

Laufzeit (typisch) = Anzahl Einträge der Tabelle mal Aufwand pro Eintrag.

272

Dynamic Programming: Beschreibung am Beispiel

- Dimension der Tabelle? Bedeutung der Einträge? Tabelle der Grösse $n \times 1$. n-ter Eintrag enthält n-te Fibonacci Zahl.
- Welche Einträge hängen nicht von anderen ab? Werte F_1 und F_2 sind unabhängig einfach "berechenbar".
- In welcher Reihenfolge können Einträge berechnet werden, so dass benötigte Einträge jeweils vorhanden sind?

 F_i mit aufsteigenden i.

Wie kann sich Lösung aus der Tabelle konstruieren lassen? F_n ist die n-te Fibonacci-Zahl.

Dynamic Programming = Divide-And-Conquer?

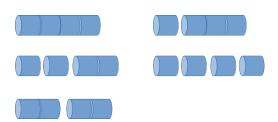
- In beiden Fällen ist das Ursprungsproblem (einfacher) lösbar, indem Lösungen von Teilproblemen herangezogen werden können. Das Problem hat optimale Substruktur.
- Bei Divide-And-Conquer Algorithmen (z.B. Mergesort) sind Teilprobleme unabhängig; deren Lösungen werden im Algorithmus nur einmal benötigt.
- Beim DP sind Teilprobleme nicht unabhängig. Das Problem hat überlappende Teilprobleme, welche im Algorithmus mehrfach gebraucht werden.
- Damit sie nur einmal gerechnet werden müssen, werden Resultate tabelliert. Dafür darf es zwischen Teilproblemen keine zirkulären Abhängigkeiten geben.

Schneiden von Eisenstäben

- Metallstäbe werden zerschnitten und verkauft.
- Metallstäbe der Länge $n \in \mathbb{N}$ verfügbar. Zerschneiden kostet nichts.
- Für jede Länge $l \in \mathbb{N}$, $l \leq n$ bekannt: Wert $v_l \in \mathbb{R}^+$
- **Z**iel: Zerschneide die Stange so (in $k \in \mathbb{N}$ Stücke), dass

$$\sum_{i=1}^k v_{l_i} \text{ maximal unter } \sum_{i=1}^k l_i = n.$$

Schneiden von Eisenstäben: Beispiel



Arten, einen Stab der Länge 4 zu zerschneiden (ohne Permutationen)

Länge	0	1	2	3	4	⇒ Bester Schnitt: 3 + 1 mit Wert 10
Preis	0	2	3	8	9	

276

Wie findet man den DP Algorithmus

- Genaue Formulierung der gesuchten Lösung
- Definiere Teilprobleme (und bestimme deren Anzahl)
- Raten / Aufzählen (und bestimme die Laufzeit für das Raten)
- Rekursion: verbinde die Teilprobleme
- Memoisieren / Tabellieren. Bestimme die Abhängigkeiten der Teilprobleme
- Lösung des ProblemsLaufzeit = #Teilprobleme × Zeit/Teilproblem

Struktur des Problems

- o Gesucht: r_n = maximal erreichbarer Wert von (ganzem oder geschnittenem) Stab mit Länge n.
- **Teilprobleme:** maximal erreichbarer Wert r_k für alle $0 \le k < n$
- Rate Länge des ersten Stückes
- **3** Rekursion

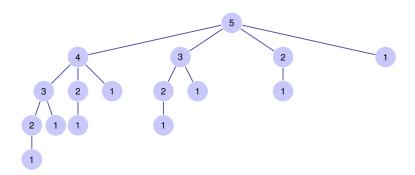
$$r_k = \max \{v_i + r_{k-i} : 0 < i \le k\}, \quad k > 0$$

 $r_0 = 0$

- Abhängigkeit: r_k hängt (nur) ab von den Werten v_i , $l \le i \le k$ und den optimalen Schnitten r_i , i < k
- ullet Lösung in r_n

Algorithmus RodCut(v,n)

Rekursionsbaum



Algorithmus RodCutMemoized(m, v, n)

Input: $n \ge 0$, Preise v, Memoization Tabelle m

Output: bester Wert

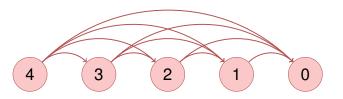
$$\begin{array}{l} \mathbf{q} \leftarrow \mathbf{0} \\ \textbf{if } n > 0 \textbf{ then} \\ & | \mathbf{if} \ \exists \ m[n] \textbf{ then} \\ & | \ q \leftarrow m[n] \\ \textbf{else} \\ & | \ \mathbf{for} \ i \leftarrow 1, \dots, n \textbf{ do} \\ & | \ q \leftarrow \max\{q, v_i + \mathsf{RodCutMemoized}(m, v, n-i)\}; \\ & | \ m[n] \leftarrow q \end{array}$$

 $\mathbf{return}\ q$

Laufzeit $\sum_{i=1}^n i = \Theta(n^2)$

Teilproblem-Graph

beschreibt die Abhängigkeiten der Teilprobleme untereinander



und darf keine Zyklen enthalten

 $^{^{20}}T(n) = T(n-1) + \sum_{i=0}^{n-2} T(i) + c = T(n-1) + (T(n-1) - c) + c = 2T(n-1) \quad (n > 0)$

Konstruktion des optimalen Schnittes

- Während der (rekursiven) Berechnung der optimalen Lösung für jedes $k \le n$ bestimmt der rekursive Algorithmus die optimale Länge des ersten Stabes
- Speichere die Länge des ersten Stabes für jedes $k \le n$ in einer Tabelle mit n Einträgen.

Bottom-Up Beschreibung am Beispiel

Dimension der Tabelle? Bedeutung der Einträge?

- Tabelle der Grösse $n \times 1$. n-ter Eintrag enthält besten Wert eines Stabes der Länge n.
- Welche Einträge hängen nicht von anderen ab?
- In welcher Reihenfolge können Einträge berechnet werden, so dass benötigte Einträge jeweils vorhanden sind?

 $r_i, i = 1, \ldots, n.$

Wert r_0 ist 0.

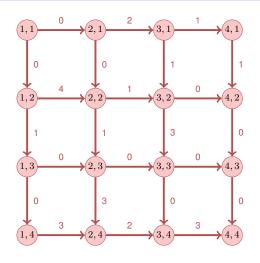
Wie kann sich Lösung aus der Tabelle konstruieren lassen?

 r_n ist der beste Wert für eine Stange der Länge n

284

Kaninchen!

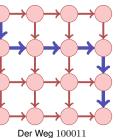
Ein Kaninchen sitzt auf Platz (1,1) eines $n \times n$ Gitters. Es kann nur nach Osten oder nach Süden gehen. Auf jedem Wegstück liegt eine Anzahl Rüben. Wie viele Rüben sammelt das Kaninchen maximal ein?



Kaninchen!

Anzahl mögliche Pfade?

- Auswahl von n-1 Wegen nach Süden aus 2n-2 Wegen insgesamt.
 - $\binom{2n-2}{n-1} \in \Omega(2^n)$
- ⇒ Naiver Algorithmus hat keine Chance



Der Weg 100011 (1:nach Süden, 0:nach Osten)

286

Rekursion

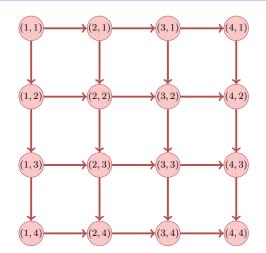
Gesucht: $T_{0,0}$ = Maximale Anzahl Rüben von (0,0) nach (n,n).

Sei $w_{(i,j)-(i',j')}$ Anzahl Rüben auf Kante von (i,j) nach (i',j').

Rekursion (maximale Anzahl Rüben von (i, j) nach (n, n))

$$T_{ij} = \begin{cases} \max\{w_{(i,j)-(i,j+1)} + T_{i,j+1}, w_{(i,j)-(i+1,j)} + T_{i+1,j}\}, & i < n, j < n \\ w_{(i,j)-(i,j+1)} + T_{i,j+1}, & i = n, j < n \\ w_{(i,j)-(i+1,j)} + T_{i+1,j}, & i < n, j = n \\ 0 & i = j = n \end{cases}$$

Teilproblemabhängigkeitsgraph



Bottom-Up Beschreibung am Beispiel

Dimension der Tabelle? Bedeutung der Einträge?

- Tabelle T der Grösse $n \times n$. Eintrag bei i, j enthält die maximale Anzahl Rüben von (i, j) nach (n, n).
- Welche Einträge hängen nicht von anderen ab?

Wert $T_{n,n}$ ist 0.

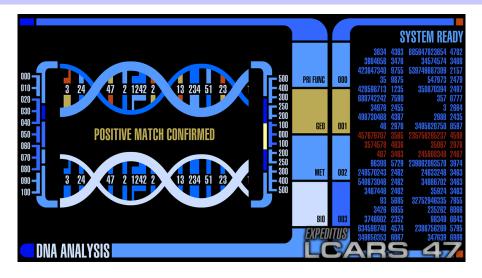
In welcher Reihenfolge können Einträge berechnet werden, so dass benötigte Einträge jeweils vorhanden sind?

 $T_{i,j}$ mit $i=n \searrow 1$ und für jedes i: $j=n \searrow 1$, (oder umgekehrt: $j=n \searrow 1$ und für jedes j: $i=n \searrow 1$).

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

 $T_{1,1}$ enthält die maximale Anzahl Rüben

DNA - Vergleich (Star Trek)



_

DNA - Vergleich

- DNA besteht aus Sequenzen von vier verschiedenen Nukleotiden
 Adenin Guanin Thymin Cytosin
- DNA-Sequenzen (Gene) werden mit Zeichenketten aus A, G, T und C beschrieben.
- Ein möglicher Vergleich zweier Gene: Bestimme Längste gemeinsame Teilfolge

Das Problem, die längste gemeinsame Teilfolge zu finden ist ein Spezialfall der minimalen Editierdistanz. Die folgenden Folien werden daher in der Vorlesung nicht behandelt.

[Längste Gemeiname Teilfolge]

Teilfolgen einer Zeichenkette:

Teilfolgen(KUH): (), (K), (U), (H), (KU), (KH), (UH), (KUH)

Problem:

292

- Eingabe: Zwei Zeichenketten $A = (a_1, \ldots, a_m)$, $B = (b_1, \ldots, b_n)$ der Längen m > 0 und n > 0.
- Gesucht: Eine längste gemeinsame Teilfolge (LGT) von A und B.

(not shown in class) 293

[Längste Gemeiname Teilfolge]

Beispiele:

LGT(IGEL,KATZE)=E, LGT(TIGER,ZIEGE)=IGE

Ideen zur Lösung?

[Rekursives Vorgehen]

Annahme: Lösungen L(i,j) bekannt für $A[1,\ldots,i]$ und $B[1,\ldots,j]$ für alle $1 \le i \le m$ und $1 \le j \le n$, jedoch nicht für i=m und j=n.

Betrachten Zeichen a_m , b_n . Drei Möglichkeiten:

- **1** A wird um ein Leerzeichen erweitert. L(m,n) = L(m,n-1)
- **2** B wird um ein Leerzeichen erweitert. L(m,n) = L(m-1,n)
- $L(m,n) = L(m-1,n-1) + \delta_{mn} \text{ mit } \delta_{mn} = 1 \text{ wenn } a_m = b_n \\ \text{und } \delta_{mn} = 0 \text{ sonst}$

[Rekursion]

$L(m,n) \leftarrow \max \{L(m-1,n-1) + \delta_{mn}, L(m,n-1), L(m-1,n)\}$ für m,n>0 und Randfälle $L(\cdot,0)=0, L(0,\cdot)=0.$

	\emptyset	Ζ	1	Ε	G 0 0 1 2 2 2	Ε
Ø	0	0	0	0	0	0
Т	0	0	0	0	0	0
I	0	0	1	1	1	1
G	0	0	1	1	2	2
Ε	0	0	1	2	2	3
R	0	0	1	2	2	3

[Dynamic Programming Algorithmus LGT]

Dimension der Tabelle? Bedeutung der Einträge?

Tabelle $L[0,\ldots,m][0,\ldots,n]$. L[i,j]: Länge einer LGT der Zeichenketten (a_1,\ldots,a_i) und (b_1,\ldots,b_j)

Berechnung eines Eintrags

 $L[0,i] \leftarrow 0 \ \forall 0 \leq i \leq m, \ L[j,0] \leftarrow 0 \ \forall 0 \leq j \leq n. \ \text{Berechnung von} \ L[i,j] \\ \text{sonst mit} \ L[i,j] = \max(L[i-1,j-1] + \delta_{ij}, L[i,j-1], L[i-1,j]).$

(not shown in class) 297

(not shown in class) 296

[Dynamic Programming Algorithmus LGT]

Berechnungsreihenfolge

Abhängigkeiten berücksichtigen: z.B. Zeilen aufsteigend und innerhalb von Zeilen Spalten aufsteigend.

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

Beginne bei $j=m,\,i=n.$ Falls $a_i=b_j$ gilt, gib a_i aus und fahre fort mit $(j,i)\leftarrow (j-1,i-1);$ sonst, falls L[i,j]=L[i,j-1] fahre fort mit $j\leftarrow j-1$; sonst, falls L[i,j]=L[i-1,j] fahre fort mit $i\leftarrow i-1$. Terminiere für i=0 oder j=0.

[Analyse LGT]

- Anzahl Tabelleneinträge: $(m+1) \cdot (n+1)$.
- Berechnung jeweils mit konstanter Anzahl Zuweisungen und Vergleichen. Anzahl Schritte $\mathcal{O}(mn)$
- Bestimmen der Lösung: jeweils Verringerung von i oder j. Maximal $\mathcal{O}(n+m)$ Schritte.

Laufzeit insgesamt:

 $\mathcal{O}(mn)$.

(not shown in class) 298 (not shown in class) 298

Minimale Editierdistanz

Editierdistanz von zwei Zeichenketten $A_n = (a_1, \ldots, a_m)$, $B_m = (b_1, \ldots, b_m).$

Editieroperationen:

- Einfügen eines Zeichens
- Löschen eines Zeichens
- Anderung eines Zeichens

Frage: Wie viele Editieroperationen sind mindestens nötig, um eine gegebene Zeichenkette A in eine Zeichenkette B zu überführen.

TIGER ZIGER ZIEGER ZIEGE

Minimale Editierdistanz

Gesucht: Günstigste zeichenweise Transformation $A_n \to B_m$ mit Kosten

Operation	Levenshtein	LGT ²¹	allgemein
c einfügen	1	1	ins(c)
c löschen	1	1	del(c)
Ersetzen $c \rightarrow c'$	$1(c \neq c')$	$\infty \cdot \mathbb{1}(c \neq c')$	repl(c,c')

Beispiel

DP

- E(n,m) = minimale Anzahl Editieroperationen (ED Kosten) für $a_{1...n} \rightarrow b_{1...m}$
- Teilprobleme $E(i, j) = \text{ED von } a_{1...i}. b_{1...i}.$ $\mathsf{\#TP} = n \cdot m$ Kosten $\Theta(1)$
- Raten/Probieren
 - $a_{1..i} \rightarrow a_{1...i-1}$ (löschen)
 - $a_{1..i} \rightarrow a_{1...i}b_i$ (einfügen)
 - $a_{1..i} \rightarrow a_{1...i_1}b_i$ (ersetzen)
- Rekursion

$$E(i,j) = \min egin{cases} \mathsf{del}(a_i) + E(i-1,j), \\ \mathsf{ins}(b_j) + E(i,j-1), \\ \mathsf{repl}(a_i,b_j) + E(i-1,j-1) \end{cases}$$

DP

300

4 Abhängigkeiten

- ⇒ Berechnung von links oben nach rechts unten. Zeilen- oder Spaltenweise.
- **5** Lösung steht in E(n,m)

²¹Längste gemeinsame Teilfolge – Spezialfall des Editierproblems

Beispiel (Levenshteinabstand)

$E[i,j] \leftarrow \min \{ E[i-1,j]+1, E[i,j-1]+1, E[i-1,j-1]+1 (a_i \neq b_j) \}$

	Ø	Z	I	Ε	G	Ε
Ø	0	1	2	3	4	5
Т	1	1	2	3	4	5
I	2	2	1	2	3	4
G	3	3	2	2	2	3
Ε	4	4	3	2	3	2
R	5	5	4	3	4 4 3 2 3 3	3

Editierschritte: von rechts unten nach links oben, der Rekursion folgend. Bottom-Up Beschreibung des Algorithmus: Übung

Bottom-Up DP Algorithmus ED

Berechnungsreihenfolge

Abhängigkeiten berücksichtigen: z.B. Zeilen aufsteigend und innerhalb von Zeilen Spalten aufsteigend.

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

Beginne bei j=m, i=n. Falls $E[i,j]=\operatorname{repl}(a_i,b_j)+E(i-1,j-1)$ gilt, gib

 $a_i o b_j$ aus und fahre fort mit $(j,i) \leftarrow (j-1,i-1)$; sonst, falls $E[i,j] = \operatorname{del}(a_i) + E(i-1,j)$ gib $\operatorname{del}(a_i)$ aus fahre fort mit $j \leftarrow j-1$; sonst, falls $E[i,j] = \operatorname{ins}(b_j) + E(i,j-1)$, gib $\operatorname{ins}(b_j)$ aus und fahre fort mit $i \leftarrow i-1$. Terminiere für i=0 und j=0.

Bottom-Up DP Algorithmus ED]

Dimension der Tabelle? Bedeutung der Einträge?

Tabelle E[0, ..., m][0, ..., n]. E[i, j]: Minimaler Editierabstand der Zeichenketten $(a_1, ..., a_i)$ und $(b_1, ..., b_j)$

Berechnung eines Eintrags

$$\begin{split} E[0,i] \leftarrow i \ \forall 0 \leq i \leq m, \ E[j,0] \leftarrow i \ \forall 0 \leq j \leq n. \ \text{Berechnung von} \ E[i,j] \\ \text{sonst mit} \ E[i,j] = \\ \min\{ \det(a_i) + E(i-1,j), \operatorname{ins}(b_j) + E(i,j-1), \operatorname{repl}(a_i,b_j) + E(i-1,j-1) \} \end{split}$$

305