
12. Dynamic Programming

Memoization, Optimal Substructure, Overlapping Sub-Problems,
Dependencies, General Procedure. Examples: Rod Cutting,
Rabbits, Edit Distance

[Ottman/Widmayer, Kap. 7.1, 7.4, Cormen et al, Kap. 15]
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Fibonacci Numbers

(again)

Fn :=

{
n if n < 2

Fn−1 + Fn−2 if n ≥ 2.

Analysis: why ist the recursive algorithm so slow?
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Algorithm FibonacciRecursive(n)

Input: n ≥ 0
Output: n-th Fibonacci number

if n < 2 then
f ← n

else
f ← FibonacciRecursive(n− 1) + FibonacciRecursive(n− 2)

return f
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Analysis

T (n): Number executed operations.

n = 0, 1: T (n) = Θ(1)

n ≥ 2: T (n) = T (n− 2) + T (n− 1) + c.

T (n) = T (n− 2) + T (n− 1) + c ≥ 2T (n− 2) + c ≥ 2n/2c′ = (
√

2)nc′

Algorithm is exponential in n.
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Reason (visual)

F47

F46

F45

F44 F43

F44

F43 F42

F45

F44

F43 F42

F43

F42 F41

Nodes with same values are evaluated (too) often.
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Memoization

Memoization (sic) saving intermediate results.

Before a subproblem is solved, the existence of the corresponding
intermediate result is checked.
If an intermediate result exists then it is used.
Otherwise the algorithm is executed and the result is saved
accordingly.
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Memoization with Fibonacci

F47

F46

F45

F44 F43

F44

F45

Rechteckige Knoten wurden bereits ausgewertet.
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Algorithm FibonacciMemoization(n)

Input: n ≥ 0
Output: n-th Fibonacci number

if n ≤ 2 then
f ← 1

else if ∃memo[n] then
f ← memo[n]

else
f ← FibonacciMemoization(n− 1) + FibonacciMemoization(n− 2)
memo[n]← f

return f
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Analysis

Computational complexity:

T (n) = T (n− 1) + c = ... = O(n).

because after the call to f(n− 1), f(n− 2) has already been
computed.

A different argument: f(n) is computed exactly once recursively for
each n. Runtime costs: n calls with Θ(1) costs per call n · c ∈ Θ(n).
The recursion vanishes from the running time computation.

Algorithm requires Θ(n) memory.19

19But the naive recursive algorithm also requires Θ(n) memory implicitly.
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Looking closer ...

... the algorithm computes the values of F1, F2, F3,. . . in the
top-down approach of the recursion.

Can write the algorithm bottom-up. This is characteristic for dynamic
programming.
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Algorithm FibonacciBottomUp(n)

Input: n ≥ 0
Output: n-th Fibonacci number

F [1]← 1
F [2]← 1
for i← 3, . . . , n do

F [i]← F [i− 1] + F [i− 2]

return F [n]
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Dynamic Programming: Idea

Divide a complex problem into a reasonable number of
sub-problems
The solution of the sub-problems will be used to solve the more
complex problem
Identical problems will be computed only once
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Dynamic Programming Consequence

Identical problems will be computed only once

⇒ Results are saved

We trade spee against

memory consumption
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Dynamic Programming: Description

1 Use a DP-table with information to the subproblems.
Dimension of the entries? Semantics of the entries?

2 Computation of the base cases
Which entries do not depend on others?

3 Determine computation order.
In which order can the entries be computed such that dependencies are
fulfilled?

4 Read-out the solution
How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per entry.
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Dynamic Programing: Description with the example

1
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains nth Fibonacci number.

2
Which entries do not depend on other entries?

Values F1 and F2 can be computed easily and independently.

3
What is the execution order such that required entries are always available?

Fi with increasing i.

4
Wie kann sich Lösung aus der Tabelle konstruieren lassen?

Fn ist die n-te Fibonacci-Zahl.
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Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by
utilizing the solutions of sub-problems. The problem provides
optimal substructure.
Divide-And-Conquer algorithms (such as Mergesort):
sub-problems are independent; their solutions are required only
once in the algorithm.
DP: sub-problems are dependent. The problem is said to have
overlapping sub-problems that are required multiple-times in the
algorithm.
In order to avoid redundant computations, results are tabulated.
For sub-problems there must not be any circular dependencies.
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Rod Cutting

Rods (metal sticks) are cut and sold.
Rods of length n ∈ N are available. A cut does not provide any
costs.
For each length l ∈ N, l ≤ n known is the value vl ∈ R+

Goal: cut the rods such (into k ∈ N pieces) that

k∑
i=1

vli is maximized subject to
k∑

i=1

li = n.
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Rod Cutting: Example

Possibilities to cut a rod of length 4 (without permutations)

Length 0 1 2 3 4
Price 0 2 3 8 9

⇒ Best cut: 3 + 1 with value 10.
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Wie findet man den DP Algorithms

0 Exact formulation of the wanted solution
1 Define sub-problems (and compute the cardinality)
2 Guess / Enumerate (and determine the running time for

guessing)
3 Recursion: relate sub-problems
4 Memoize / Tabularize. Determine the dependencies of the

sub-problems
5 Solve the problem

Running time = #sub-problems × time/sub-problem
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Structure of the problem
0 Wanted: rn = maximal value of rod (cut or as a whole) with

length n.
1 sub-problems: maximal value rk for each 0 ≤ k < n

2 Guess the length of the first piece
3 Recursion

rk = max {vi + rk−i : 0 < i ≤ k} , k > 0

r0 = 0

4 Dependency: rk depends (only) on values vi, 1 ≤ i ≤ k and the
optimal cuts ri, i < k

5 Solution in rn
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Algorithm RodCut(v,n)

Input: n ≥ 0, Prices v
Output: best value

q ← 0
if n > 0 then

for i← 1, . . . , n do
q ← max{q, vi + RodCut(v, n− i)};

return q

Running time T (n) =
∑n−1

i=0 T (i) + c ⇒20 T (n) ∈ Θ(2n)

20T (n) = T (n− 1) +
∑n−2

i=0 T (i) + c = T (n− 1) + (T (n− 1) − c) + c = 2T (n− 1) (n > 0)
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Recursion Tree

5

4

3

2

1

1

2

1

1

3

2

1

1

2

1

1
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Algorithm RodCutMemoized(m, v, n)
Input: n ≥ 0, Prices v, Memoization Table m
Output: best value

q ← 0
if n > 0 then

if ∃ m[n] then
q ← m[n]

else
for i← 1, . . . , n do

q ← max{q, vi + RodCutMemoized(m, v, n− i)};
m[n]← q

return q

Running time
∑n

i=1 i = Θ(n2)
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Subproblem-Graph

Describes the mutual dependencies of the subproblems

4 3 2 1 0

and must not contain cycles
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Construction of the Optimal Cut

During the (recursive) computation of the optimal solution for each
k ≤ n the recursive algorithm determines the optimal length of the
first rod
Store the lenght of the first rod in a separate table of length n
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Bottom-up Description with the example

1
Dimension of the table? Semantics of the entries?

n× 1 table. nth entry contains the best value of a rod of length n.

2
Which entries do not depend on other entries?

Value r0 is 0

3
What is the execution order such that required entries are always available?

ri, i = 1, . . . , n

.

4
Wie kann sich Lösung aus der Tabelle konstruieren lassen?

rn is the best value for the rod of length n.
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Rabbit!

A rabbit sits on cite (1, 1)
of an n × n grid. It can
only move to east or south.
On each pathway there is
a number of carrots. How
many carrots does the rab-
bit collect maximally?

1, 1

1, 2

1, 3

1, 4

2, 1

2, 2

2, 3

2, 4

3, 1

3, 2

3, 3

3, 4

4, 1

4, 2

4, 3

4, 4

3

4

4

0

4

3

1

3

0

2

4

1

2

1

0

1

3

0

4

1

4

4

1

1
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Rabbit!

Number of possible paths?
Choice of n− 1 ways to south out of
2n− 2 ways overal.

(
2n− 2

n− 1

)
∈ Ω(2n)

⇒ No chance for a naive algorithm
The path 100011

(1:to south, 0: to east)
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Recursion

Wanted: T0,0 = maximal number carrots from (0, 0) to (n, n).

Let w(i,j)−(i′,j′) number of carrots on egde from (i, j) to (i′, j′).

Recursion (maximal number of carrots from (i, j) to (n, n)

Tij =


max{w(i,j)−(i,j+1) + Ti,j+1, w(i,j)−(i+1,j) + Ti+1,j}, i < n, j < n

w(i,j)−(i,j+1) + Ti,j+1, i = n, j < n

w(i,j)−(i+1,j) + Ti+1,j, i < n, j = n

0 i = j = n
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Graph of Subproblem Dependencies

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(4, 1)

(4, 2)

(4, 3)

(4, 4)
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Bottom-up Description with the example

1

Dimension of the table? Semantics of the entries?

Table T with size n× n. Entry at i, j provides the maximal number of carrots
from (i, j) to (n, n).

2
Which entries do not depend on other entries?

Value Tn,n is 0

3

What is the execution order such that required entries are always available?

Ti,j with i = n↘ 1 and for each i: j = n↘ 1, (or vice-versa: j = n↘ 1 and
for each j: i = n↘ 1)

.

4
Wie kann sich Lösung aus der Tabelle konstruieren lassen?

T1,1 provides the maximal number of carrots.
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DNA - Comparison (Star Trek)
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DNA - Comparison

DNA consists of sequences of four different nucleotides Adenine
Guanine Thymine Cytosine
DNA sequences (genes) thus can be described with strings of A,
G, T and C.
Possible comparison of two genes: determine the longest
common subsequence

The longest common subsequence problem is a special case of the
minimal edit distance problem. The following slides are therefore not
presented in the lectures.
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[Longest common subsequence]

Subsequences of a string:
Subsequences(KUH): (), (K), (U), (H), (KU), (KH), (UH),
(KUH)

Problem:

Input: two strings A = (a1, . . . , am), B = (b1, . . . , bn) with lengths
m > 0 and n > 0.
Wanted: Longest common subsequecnes (LCS) of A and B.

(not shown in class) 293



[Longest Common Subsequence]

Examples:
LGT(IGEL,KATZE)=E, LGT(TIGER,ZIEGE)=IGE

Ideas to solve?

T I G E R
Z I E G E

(not shown in class) 294



[Recursive Procedure]
Assumption: solutions L(i, j) known for A[1, . . . , i] and B[1, . . . , j]
for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, but not for i = m and j = n.

T I G E R
Z I E G E

Consider characters am, bn. Three possibilities:

1 A is enlarged by one whitespace. L(m,n) = L(m,n− 1)

2 B is enlarged by one whitespace. L(m,n) = L(m− 1, n)

3 L(m,n) = L(m− 1, n− 1) + δmn with δmn = 1 if am = bn and
δmn = 0 otherwise

(not shown in class) 295



[Recursion]

L(m,n)← max {L(m− 1, n− 1) + δmn, L(m,n− 1), L(m− 1, n)}

for m,n > 0 and base cases L(·, 0) = 0, L(0, ·) = 0.

∅ Z I E G E
∅ 0 0 0 0 0 0
T 0 0 0 0 0 0
I 0 0 1 1 1 1
G 0 0 1 1 2 2
E 0 0 1 2 2 3
R 0 0 1 2 2 3

(not shown in class) 296



[Dynamic Programming algorithm LCS]

1

Dimension of the table? Semantics?

Table L[0, . . . ,m][0, . . . , n]. L[i, j]: length of a LCS of the strings (a1, . . . , ai)
and (b1, . . . , bj)

2

Computation of an entry

L[0, i]← 0 ∀0 ≤ i ≤ m, L[j, 0]← 0 ∀0 ≤ j ≤ n. Computation of L[i, j]
otherwise via L[i, j] = max(L[i− 1, j − 1] + δij, L[i, j − 1], L[i− 1, j]).
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[Dynamic Programming algorithm LCS]

3
Computation order

Rows increasing and within columns increasing (or the other way round).

4

Reconstruct solution?

Start with j = m, i = n. If ai = bj then output ai and continue with
(j, i)← (j − 1, i− 1); otherwise, if L[i, j] = L[i, j − 1] continue with
j ← j − 1 otherwise, if L[i, j] = L[i− 1, j] continue with i← i− 1 .
Terminate for i = 0 or j = 0.
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[Analysis LCS]

Number table entries: (m+ 1) · (n+ 1).
Constant number of assignments and comparisons each. Number
steps: O(mn)

Determination of solition: decrease i or j. Maximally O(n+m)
steps.

Runtime overal:
O(mn).
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Minimal Editing Distance

Editing distance of two sequences An = (a1, . . . , am),
Bm = (b1, . . . , bm).

Editing operations:

Insertion of a character
Deletion of a character
Replacement of a character

Question: how many editing operations at least required in order to
transform string A into string B.

TIGER ZIGER ZIEGER ZIEGE
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Minimal Editing Distance

Wanted: cheapest character-wise transformation An → Bm with
costs

operation Levenshtein LCS21 general
Insert c 1 1 ins(c)
Delete c 1 1 del(c)
Replace c→ c′ 1(c 6= c′) ∞ · 1(c 6= c′) repl(c, c′)

Beispiel
T I G E R
Z I E G E

T I _ G E R
Z I E G E _

T→Z +E -R
Z→T -E +R

21Longest common subsequence – A special case of an editing problem
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DP
0 E(n,m) = mimimum number edit operations (ED cost)
a1...n → b1...m

1 Subproblems E(i, j) = ED von a1...i. b1...j. #SP = n ·m
2 Guess CostsΘ(1)

a1..i → a1...i−1 (delete)
a1..i → a1...ibj (insert)
a1..i → a1...i1bj (replace)

3 Rekursion

E(i, j) = min


del(ai) + E(i− 1, j),

ins(bj) + E(i, j − 1),

repl(ai, bj) + E(i− 1, j − 1)
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DP

4 Dependencies

⇒ Computation from left top to bottom right. Row- or
column-wise.

5 Solution in E(n,m)
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Example (Levenshtein Distance)

E[i, j]← min
{
E[i−1, j]+1, E[i, j−1]+1, E[i−1, j−1]+1(ai 6= bj)

}
∅ Z I E G E

∅ 0 1 2 3 4 5
T 1 1 2 3 4 5
I 2 2 1 2 3 4
G 3 3 2 2 2 3
E 4 4 3 2 3 2
R 5 5 4 3 3 3

Editing steps: from bottom right to top left, following the recursion.
Bottom-Up description of the algorithm: exercise
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Bottom-Up DP algorithm ED]

1

Dimension of the table? Semantics?

Table E[0, . . . ,m][0, . . . , n]. E[i, j]: minimal edit distance of the strings
(a1, . . . , ai) and (b1, . . . , bj)

2

Computation of an entry

E[0, i]← i ∀0 ≤ i ≤ m, E[j, 0]← i ∀0 ≤ j ≤ n. Computation of E[i, j]
otherwise via E[i, j] =
min{del(ai) +E(i− 1, j), ins(bj) +E(i, j − 1), repl(ai, bj) +E(i− 1, j − 1)}
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Bottom-Up DP algorithm ED

3
Computation order

Rows increasing and within columns increasing (or the other way round).

4

Reconstruct solution?

Start with j = m, i = n. If E[i, j] = repl(ai, bj) + E(i− 1, j − 1) then output
ai → bj and continue with (j, i)← (j − 1, i− 1); otherwise, if
E[i, j] = del(ai) + E(i− 1, j) output del(ai) and continue with j ← j − 1
otherwise, if E[i, j] = ins(bj) + E(i, j − 1), continue with i← i− 1 .
Terminate for i = 0 and j = 0.
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