12. Dynamic Programming

Memoization, Optimal Substructure, Overlapping Sub-Problems, Dependencies, General Procedure. Examples: Rod Cutting, Rabbits, Edit Distance

[Ottman/Widmayer, Kap. 7.1, 7.4, Cormen et al, Kap. 15]

Fibonacci Numbers

$$F_n := \begin{cases} n & \text{if } n < 2\\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

Analysis: why ist the recursive algorithm so slow?

Algorithm FibonacciRecursive(*n***)**

```
Input: n \ge 0
Output: n-th Fibonacci number
```

```
 \begin{array}{l} \text{if } n < 2 \text{ then} \\ \mid f \leftarrow n \\ \text{else} \\ \mid f \leftarrow \text{FibonacciRecursive}(n-1) + \text{FibonacciRecursive}(n-2) \\ \text{return } f \end{array}
```

Analysis

T(n): Number executed operations.

■ n = 0, 1: $T(n) = \Theta(1)$

T(n): Number executed operations.

■
$$n = 0, 1$$
: $T(n) = \Theta(1)$
■ $n \ge 2$: $T(n) = T(n-2) + T(n-1) + c$.

T(n): Number executed operations.

$$n = 0, 1: T(n) = \Theta(1)$$

$$n \ge 2: T(n) = T(n-2) + T(n-1) + c.$$

$$T(n) = T(n-2) + T(n-1) + c \ge 2T(n-2) + c \ge 2^{n/2}c' = (\sqrt{2})^n c'$$

T(n): Number executed operations.

$$n = 0, 1: T(n) = \Theta(1)$$

$$n \ge 2: T(n) = T(n-2) + T(n-1) + c.$$

$$T(n) = T(n-2) + T(n-1) + c \ge 2T(n-2) + c \ge 2^{n/2}c' = (\sqrt{2})^n c'$$

Algorithm is *exponential* in n.

Reason (visual)

Nodes with same values are evaluated (too) often.

Memoization (sic) saving intermediate results.

- Before a subproblem is solved, the existence of the corresponding intermediate result is checked.
- If an intermediate result exists then it is used.
- Otherwise the algorithm is executed and the result is saved accordingly.

Memoization with Fibonacci

Rechteckige Knoten wurden bereits ausgewertet.

Algorithm FibonacciMemoization(n)

```
Input: n \ge 0
Output: n-th Fibonacci number
if n < 2 then
     f \leftarrow 1
else if \exists memo[n] then
     f \leftarrow \mathsf{memo}[n]
else
     f \leftarrow \mathsf{FibonacciMemoization}(n-1) + \mathsf{FibonacciMemoization}(n-2)
     \mathsf{memo}[n] \leftarrow f
return f
```

Analysis

Computational complexity:

$$T(n) = T(n-1) + c = \dots = \mathcal{O}(n).$$

because after the call to f(n-1), f(n-2) has already been computed.

A different argument: f(n) is computed exactly once recursively for each n. Runtime costs: n calls with $\Theta(1)$ costs per call $n \cdot c \in \Theta(n)$. The recursion vanishes from the running time computation.

Algorithm requires $\Theta(n)$ memory.¹⁹

¹⁹But the naive recursive algorithm also requires $\Theta(n)$ memory implicitly.

- ... the algorithm computes the values of F_1 , F_2 , F_3 ,... in the *top-down* approach of the recursion.
- Can write the algorithm *bottom-up*. This is characteristic for *dynamic programming*.

Algorithm FibonacciBottomUp(n)

Input: $n \ge 0$ Output: *n*-th Fibonacci number $F[1] \leftarrow 1$ $F[2] \leftarrow 1$ for $i \leftarrow 3, \dots, n$ do $\lfloor F[i] \leftarrow F[i-1] + F[i-2]$ return F[n]

Dynamic Programming: Idea

- Divide a complex problem into a reasonable number of sub-problems
- The solution of the sub-problems will be used to solve the more complex problem
- Identical problems will be computed only once

Dynamic Programming Consequence

Identical problems will be computed only once

 \Rightarrow Results are saved

192. – HyperX Fury (2x, 8GB, DDR4-2400, DIMM 288)

***** 16

Use a *DP-table* with information to the subproblems.

Dimension of the entries? Semantics of the entries?

Use a *DP-table* with information to the subproblems. Dimension of the entries? Semantics of the entries?

2 Computation of the *base cases*

Which entries do not depend on others?

1 Use a *DP-table* with information to the subproblems. Dimension of the entries? Semantics of the entries?

2 Computation of the *base cases*

Which entries do not depend on others?

3 Determine *computation order*.

In which order can the entries be computed such that dependencies are fulfilled?

- **1** Use a *DP-table* with information to the subproblems. Dimension of the entries? Semantics of the entries?
- 2 Computation of the *base cases*

Which entries do not depend on others?

3 Determine *computation order*.

In which order can the entries be computed such that dependencies are fulfilled?

Read-out the solution

How can the solution be read out from the table?

- **1** Use a *DP-table* with information to the subproblems. Dimension of the entries? Semantics of the entries?
- 2 Computation of the *base cases*

Which entries do not depend on others?

3 Determine *computation order*.

In which order can the entries be computed such that dependencies are fulfilled?

Read-out the solution

How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per entry.

Dimension of the table? Semantics of the entries?

Dimension of the table? Semantics of the entries?

 $n \times 1$ table. *n*th entry contains *n*th Fibonacci number.

Dimension of the table? Semantics of the entries?

 $n \times 1$ table. *n*th entry contains *n*th Fibonacci number.

Which entries do not depend on other entries?

2

Dimension of the table? Semantics of the entries?

 $n \times 1$ table. *n*th entry contains *n*th Fibonacci number.

Which entries do not depend on other entries? Values F_1 and F_2 can be computed easily and independently.

Dimension of the table? Semantics of the entries?

 $n \times 1$ table. *n*th entry contains *n*th Fibonacci number.

3

Which entries do not depend on other entries? Values F_1 and F_2 can be computed easily and independently.

What is the execution order such that required entries are always available?

Dimension of the table? Semantics of the entries?

 $n \times 1$ table. *n*th entry contains *n*th Fibonacci number.

Which entries do not depend on other entries? Values F_1 and F_2 can be computed easily and independently.

What is the execution order such that required entries are always available? 3

 F_i with increasing *i*.

Dimension of the table? Semantics of the entries? $n \times 1$ table. *n*th entry contains *n*th Fibonacci number.

Which entries do not depend on other entries? Values F_1 and F_2 can be computed easily and independently.

What is the execution order such that required entries are always available?

 F_i with increasing *i*.

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

Dimension of the table? Semantics of the entries? $n \times 1$ table. *n*th entry contains *n*th Fibonacci number.

Which entries do not depend on other entries? Values F_1 and F_2 can be computed easily and independently.

What is the execution order such that required entries are always available?

 F_i with increasing *i*.

3

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

 F_n ist die *n*-te Fibonacci-Zahl.

Dynamic Programming = Divide-And-Conquer ?

- In both cases the original problem can be solved (more easily) by utilizing the solutions of sub-problems. The problem provides optimal substructure.
- Divide-And-Conquer algorithms (such as Mergesort): sub-problems are independent; their solutions are required only once in the algorithm.
- DP: sub-problems are dependent. The problem is said to have overlapping sub-problems that are required multiple-times in the algorithm.
- In order to avoid redundant computations, results are tabulated. For sub-problems there must not be any circular dependencies.

Rod Cutting

- Rods (metal sticks) are cut and sold.
- Rods of length $n \in \mathbb{N}$ are available. A cut does not provide any costs.
- For each length $l \in \mathbb{N}$, $l \leq n$ known is the value $v_l \in \mathbb{R}^+$
- Goal: cut the rods such (into $k \in \mathbb{N}$ pieces) that

$$\sum_{i=1}^{k} v_{l_i} \text{ is maximized subject to } \sum_{i=1}^{k} l_i = n.$$

Rod Cutting: Example

Possibilities to cut a rod of length 4 (without permutations)

Length	0	1	2	3	4	_
Price	0	2	3	8	9	

$$\Rightarrow$$
 Best cut: 3 + 1 with value 10.

Wie findet man den DP Algorithms

- Exact formulation of the wanted solution
- Define sub-problems (and compute the cardinality)
- Guess / Enumerate (and determine the running time for guessing)
- Recursion: relate sub-problems
- Memoize / Tabularize. Determine the dependencies of the sub-problems
- Solve the problem
 Running time = #sub-problems × time/sub-problem

Structure of the problem

- Wanted: r_n = maximal value of rod (cut or as a whole) with length n.
- **1** *sub-problems*: maximal value r_k for each $0 \le k < n$
- 2 Guess the length of the first piece
- **3** Recursion

$$r_k = \max \{ v_i + r_{k-i} : 0 < i \le k \}, \quad k > 0$$

$$r_0 = 0$$

- 4 Dependency: r_k depends (only) on values v_i , $1 \le i \le k$ and the optimal cuts r_i , i < k
- **5** Solution in r_n

Algorithm RodCut(v,n)

Input: $n \ge 0$, Prices vOutput: best value $q \leftarrow 0$ if n > 0 then $\int q \leftarrow 1, \dots, n$ do $\int q \leftarrow \max\{q, v_i + \operatorname{RodCut}(v, n - i)\};$

return q

Running time
$$T(n) = \sum_{i=0}^{n-1} T(i) + c \quad \Rightarrow^{20} \quad T(n) \in \Theta(2^n)$$

 ${}^{20}T(n) = T(n-1) + \sum_{i=0}^{n-2} T(i) + c = T(n-1) + (T(n-1)-c) + c = 2T(n-1) \quad (n>0)$

Recursion Tree

Algorithm RodCutMemoized(m, v, n)

Input: $n \ge 0$, Prices v, Memoization Table m**Output:** best value

 $\begin{array}{c} q \leftarrow 0 \\ \text{if } n > 0 \text{ then} \\ & \quad \text{if } \exists m[n] \text{ then} \\ & \quad q \leftarrow m[n] \\ \text{else} \\ & \quad \left[\begin{array}{c} \text{for } i \leftarrow 1, \dots, n \text{ do} \\ & \quad \left[q \leftarrow \max\{q, v_i + \text{RodCutMemoized}(m, v, n - i)\}; \\ & \quad m[n] \leftarrow q \end{array} \right] \end{array}$

return q

Running time $\sum_{i=1}^n i = \Theta(n^2)$

Subproblem-Graph

Describes the mutual dependencies of the subproblems

and must not contain cycles

Construction of the Optimal Cut

- During the (recursive) computation of the optimal solution for each k ≤ n the recursive algorithm determines the optimal length of the first rod
- Store the lenght of the first rod in a separate table of length n

Dimension of the table? Semantics of the entries?

Dimension of the table? Semantics of the entries?

 $n \times 1$ table. *n*th entry contains the best value of a rod of length *n*.

Dimension of the table? Semantics of the entries?

 $n \times 1$ table. *n*th entry contains the best value of a rod of length *n*.

Which entries do not depend on other entries?

Dimension of the table? Semantics of the entries?

 $n \times 1$ table. *n*th entry contains the best value of a rod of length *n*.

Which entries do not depend on other entries?

Value r_0 is 0

Dimension of the table? Semantics of the entries?

 $n \times 1$ table. *n*th entry contains the best value of a rod of length n.

Which entries do not depend on other entries?

Value r_0 is 0

3

What is the execution order such that required entries are always available?

Dimension of the table? Semantics of the entries?

 $n \times 1$ table. *n*th entry contains the best value of a rod of length n.

Which entries do not depend on other entries?

Value r_0 is 0

What is the execution order such that required entries are always available?

 $r_i, i = 1, ..., n.$

Dimension of the table? Semantics of the entries?

 $n \times 1$ table. *n*th entry contains the best value of a rod of length *n*.

Which entries do not depend on other entries?

Value r_0 is 0

What is the execution order such that required entries are always available?

 $r_i, i = 1, ..., n.$

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

Dimension of the table? Semantics of the entries?

 $n \times 1$ table. *n*th entry contains the best value of a rod of length *n*.

Which entries do not depend on other entries?

Value r_0 is 0

What is the execution order such that required entries are always available?

 $r_i, i = 1, ..., n.$

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

 r_n is the best value for the rod of length n.

Rabbit!

A rabbit sits on cite (1,1)of an $n \times n$ grid. It can only move to east or south. On each pathway there is a number of carrots. How many carrots does the rabbit collect maximally?

Rabbit!

Number of possible paths? ■ Choice of n - 1 ways to south out of 2n - 2 ways overal.

\Rightarrow No chance for a naive algorithm

The path 100011 (1:to south, 0: to east)

Rabbit!

Number of possible paths? ■ Choice of n - 1 ways to south out of 2n - 2 ways overal.

$$\binom{2n-2}{n-1} \in \Omega(2^n)$$

 \Rightarrow No chance for a naive algorithm

The path 100011 (1:to south, 0: to east)

Recursion

Wanted: $T_{0,0}$ = maximal number carrots from (0,0) to (n,n). Let $w_{(i,j)-(i',j')}$ number of carrots on egde from (i,j) to (i',j'). Recursion (maximal number of carrots from (i,j) to (n,n)

$$T_{ij} = \begin{cases} \max\{w_{(i,j)-(i,j+1)} + T_{i,j+1}, w_{(i,j)-(i+1,j)} + T_{i+1,j}\}, & i < n, j < n \\ w_{(i,j)-(i,j+1)} + T_{i,j+1}, & i = n, j < n \\ w_{(i,j)-(i+1,j)} + T_{i+1,j}, & i < n, j = n \\ 0 & i = j = n \end{cases}$$

Graph of Subproblem Dependencies

Dimension of the table? Semantics of the entries?

1

Dimension of the table? Semantics of the entries?

1 Table *T* with size $n \times n$. Entry at *i*, *j* provides the maximal number of carrots from (i, j) to (n, n).

Dimension of the table? Semantics of the entries?

¹ Table *T* with size $n \times n$. Entry at *i*, *j* provides the maximal number of carrots from (i, j) to (n, n).

Which entries do not depend on other entries?

Dimension of the table? Semantics of the entries?

¹ Table *T* with size $n \times n$. Entry at *i*, *j* provides the maximal number of carrots from (i, j) to (n, n).

Which entries do not depend on other entries?

Value $T_{n,n}$ is 0

Dimension of the table? Semantics of the entries?

¹ Table *T* with size $n \times n$. Entry at *i*, *j* provides the maximal number of carrots from (i, j) to (n, n).

Which entries do not depend on other entries?

.

Value $T_{n,n}$ is 0

What is the execution order such that required entries are always available?

3

Dimension of the table? Semantics of the entries?

1 Table *T* with size $n \times n$. Entry at *i*, *j* provides the maximal number of carrots from (i, j) to (n, n).

Which entries do not depend on other entries?

Value $T_{n,n}$ is 0

What is the execution order such that required entries are always available?

³ $T_{i,j}$ with $i = n \searrow 1$ and for each $i: j = n \searrow 1$, (or vice-versa: $j = n \searrow 1$ and for each $j: i = n \searrow 1$).

Dimension of the table? Semantics of the entries?

1 Table *T* with size $n \times n$. Entry at *i*, *j* provides the maximal number of carrots from (i, j) to (n, n).

Which entries do not depend on other entries?

Value $T_{n,n}$ is 0

What is the execution order such that required entries are always available?

³ $T_{i,j}$ with $i = n \searrow 1$ and for each $i: j = n \searrow 1$, (or vice-versa: $j = n \searrow 1$ and for each $j: i = n \searrow 1$).

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

Dimension of the table? Semantics of the entries?

1 Table *T* with size $n \times n$. Entry at *i*, *j* provides the maximal number of carrots from (i, j) to (n, n).

Which entries do not depend on other entries?

Value $T_{n,n}$ is 0

What is the execution order such that required entries are always available?

³ $T_{i,j}$ with $i = n \searrow 1$ and for each $i: j = n \searrow 1$, (or vice-versa: $j = n \searrow 1$ and for each $j: i = n \searrow 1$).

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

 $T_{1,1}$ provides the maximal number of carrots.

DNA - Comparison (Star Trek)

DNA - Comparison

- DNA consists of sequences of four different nucleotides Adenine Guanine Thymine Cytosine
- DNA sequences (genes) thus can be described with strings of A, G, T and C.
- Possible comparison of two genes: determine the longest common subsequence

The longest common subsequence problem is a special case of the minimal edit distance problem. The following slides are therefore not presented in the lectures.

Subsequences of a string: Subsequences(KUH): (), (K), (U), (H), (KU), (KH), (UH), (KUH)

Problem:

- Input: two strings $A = (a_1, \ldots, a_m)$, $B = (b_1, \ldots, b_n)$ with lengths m > 0 and n > 0.
- Wanted: Longest common subsequecnes (LCS) of *A* and *B*.

[Longest Common Subsequence]

Examples: *LGT(IGEL,KATZE)=E, LGT(TIGER,ZIEGE)=IGE*

Ideas to solve?

(not shown in class) 294

[Recursive Procedure]

Assumption: solutions L(i, j) known for A[1, ..., i] and B[1, ..., j] for all $1 \le i \le m$ and $1 \le j \le n$, but not for i = m and j = n.

Consider characters a_m , b_n . Three possibilities:

A is enlarged by one whitespace. L(m, n) = L(m, n - 1)
B is enlarged by one whitespace. L(m, n) = L(m - 1, n)
L(m, n) = L(m - 1, n - 1) + δ_{mn} with δ_{mn} = 1 if a_m = b_n and δ_{mn} = 0 otherwise

[Recursion]

$$L(m, n) \leftarrow \max \{L(m - 1, n - 1) + \delta_{mn}, L(m, n - 1), L(m - 1, n)\}$$

for $m, n > 0$ and base cases $L(\cdot, 0) = 0, L(0, \cdot) = 0.$

	Ø	Ζ	Ι	Е	G	Е
Ø	0	0	0	0	0	0
Т	0	0	0	0	0	0
Ι	0	0	1	1	1	1
G	0	0	1	1	2	2
Е	0	0	1	2	2	3
R	0	0	1	2	2	3

Dimension of the table? Semantics?

1

Dimension of the table? Semantics?

¹ Table $L[0, \ldots, m][0, \ldots, n]$. L[i, j]: length of a LCS of the strings (a_1, \ldots, a_i) and (b_1, \ldots, b_j)

Dimension of the table? Semantics?

1 Table $L[0, \ldots, m][0, \ldots, n]$. L[i, j]: length of a LCS of the strings (a_1, \ldots, a_i) and (b_1, \ldots, b_j)

Computation of an entry

2

Dimension of the table? Semantics?

¹ Table $L[0, \ldots, m][0, \ldots, n]$. L[i, j]: length of a LCS of the strings (a_1, \ldots, a_i) and (b_1, \ldots, b_j)

Computation of an entry

² $L[0,i] \leftarrow 0 \ \forall 0 \le i \le m, L[j,0] \leftarrow 0 \ \forall 0 \le j \le n.$ Computation of L[i,j] otherwise via $L[i,j] = \max(L[i-1,j-1] + \delta_{ij}, L[i,j-1], L[i-1,j]).$

Computation order

Rows increasing and within columns increasing (or the other way round).
[Dynamic Programming algorithm LCS]

3

Computation order

Rows increasing and within columns increasing (or the other way round).

Reconstruct solution?

[Dynamic Programming algorithm LCS]

3

Computation order

Rows increasing and within columns increasing (or the other way round).

Reconstruct solution?

Start with j = m, i = n. If $a_i = b_j$ then output a_i and continue with $(j,i) \leftarrow (j-1,i-1)$; otherwise, if L[i,j] = L[i,j-1] continue with $j \leftarrow j-1$ otherwise, if L[i,j] = L[i-1,j] continue with $i \leftarrow i-1$. Terminate for i = 0 or j = 0.

- **Number table entries:** $(m + 1) \cdot (n + 1)$.
- Constant number of assignments and comparisons each. Number steps: $\mathcal{O}(mn)$
- Determination of solition: decrease i or j. Maximally O(n+m) steps.

Runtime overal:

 $\mathcal{O}(mn).$

Minimal Editing Distance

Editing distance of two sequences $A_n = (a_1, \ldots, a_m)$, $B_m = (b_1, \ldots, b_m)$.

Editing operations:

- Insertion of a character
- Deletion of a character
- Replacement of a character

Question: how many editing operations at least required in order to transform string *A* into string *B*. TIGER ZIGER ZIEGER ZIEGE

Minimal Editing Distance

Wanted: cheapest character-wise transformation $A_n \rightarrow B_m$ with costs

operation	Levenshtein	LCS ²¹	general
Insert c	1	1	ins(c)
Delete c	1	1	del(c)
Replace $c \to c'$	$\mathbb{1}(c \neq c')$	$\infty \cdot \mathbb{1}(c \neq c')$	repl(c,c')

Beispiel

²¹Longest common subsequence – A special case of an editing problem

DP

Image: Description of the systemE(n,m) = minimum number edit operations (ED cost) $a_{1...n} \rightarrow b_{1...m}$ $a_{1...i} \rightarrow b_{1...j}$.Image: Description of the systemE(i,j) = ED von $a_{1...i}$. $b_{1...j}$.Image: Description of the systemE(i,j) = ED von $a_{1...i}$. $b_{1...j}$.Image: Description of the systemE(i,j) = ED von $a_{1...i}$. $b_{1...j}$.Image: Description of the systemE(i,j) = ED von $a_{1...i}$. $b_{1...j}$.Image: Description of the systemE(i,j) = ED von $a_{1...i}$. $b_{1...j}$.Image: Description of the systemE(i,j) = ED von $a_{1...i}$. $b_{1...j}$.

 $\begin{array}{l} \bullet \quad a_{1..i} \rightarrow a_{1...i-1} \text{ (delete)} \\ \bullet \quad a_{1..i} \rightarrow a_{1...i}b_j \text{ (insert)} \\ \bullet \quad a_{1..i} \rightarrow a_{1...i_1}b_j \text{ (replace)} \end{array}$

3 Rekursion

$$E(i, j) = \min \begin{cases} \mathsf{del}(a_i) + E(i - 1, j), \\ \mathsf{ins}(b_j) + E(i, j - 1), \\ \mathsf{repl}(a_i, b_j) + E(i - 1, j - 1) \end{cases}$$

Dependencies

 \Rightarrow Computation from left top to bottom right. Row- or column-wise.

5 Solution in E(n,m)

Example (Levenshtein Distance)

$E[i,j] \leftarrow \min \left\{ E[i-1,j]+1, E[i,j-1]+1, E[i-1,j-1]+\mathbb{1}(a_i \neq b_j) \right\}$

	Ø	Ζ	I	Е	G	Е
Ø	0	1	2	3	4	5
Т	1	1	2	3	4	5
Т	2	2	1	2	3	4
G	3	3	2	2	2	3
Е	4	4	3	2	3	2
R	5	5	4	3	3	3

Editing steps: from bottom right to top left, following the recursion. Bottom-Up description of the algorithm: exercise

Dimension of the table? Semantics?

1

Dimension of the table? Semantics?

1 Table $E[0, \ldots, m][0, \ldots, n]$. E[i, j]: minimal edit distance of the strings (a_1, \ldots, a_i) and (b_1, \ldots, b_j)

Dimension of the table? Semantics?

1 Table $E[0, \ldots, m][0, \ldots, n]$. E[i, j]: minimal edit distance of the strings (a_1, \ldots, a_i) and (b_1, \ldots, b_j)

Computation of an entry

Dimension of the table? Semantics?

1 Table $E[0, \ldots, m][0, \ldots, n]$. E[i, j]: minimal edit distance of the strings (a_1, \ldots, a_i) and (b_1, \ldots, b_j)

Computation of an entry

$$\begin{split} E[0,i] &\leftarrow i \; \forall 0 \leq i \leq m, \: E[j,0] \leftarrow i \; \forall 0 \leq j \leq n. \text{ Computation of } E[i,j] \\ \text{otherwise via } E[i,j] = \\ \min\{ \mathsf{del}(a_i) + E(i-1,j), \mathsf{ins}(b_j) + E(i,j-1), \mathsf{repl}(a_i,b_j) + E(i-1,j-1) \} \end{split}$$

Computation order

Computation order

Rows increasing and within columns increasing (or the other way round).

Computation order

Rows increasing and within columns increasing (or the other way round).

Reconstruct solution?

Computation order

Rows increasing and within columns increasing (or the other way round).

Reconstruct solution?

Start with
$$j = m$$
, $i = n$. If $E[i, j] = \operatorname{repl}(a_i, b_j) + E(i - 1, j - 1)$ then output $a_i \to b_j$ and continue with $(j, i) \leftarrow (j - 1, i - 1)$; otherwise, if $E[i, j] = \operatorname{del}(a_i) + E(i - 1, j)$ output $\operatorname{del}(a_i)$ and continue with $j \leftarrow j - 1$ otherwise, if $E[i, j] = \operatorname{ins}(b_j) + E(i, j - 1)$, continue with $i \leftarrow i - 1$.
Terminate for $i = 0$ and $j = 0$.