
10. Repetition Binary Search Trees and
Heaps

[Ottman/Widmayer, Kap. 2.3, 5.1, Cormen et al, Kap. 6, 12.1 - 12.3]

199

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing:

linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key

200

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key

200

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order

next smallest key to given key

200

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key

200

Nomenclature

Wurzel

W

I E

K

parent

child

inner node

leaves

Order of the tree: maximum number of child nodes, here: 3
Height of the tree: maximum path length root – leaf (here: 4)

201

Binary Trees
A binary tree is either

a leaf, i.e. an empty tree, or
an inner leaf with two trees Tl (left subtree) and Tr (right subtree)
as left and right successor.

In each node v we store

a key v.key and
two nodes v.left and v.right to the roots of the left and right
subtree.
a leaf is represented by the null-pointer

key

left right

202

Baumknoten in Java

public class SearchNode {
int key;
SearchNode left;
SearchNode right;

SearchNode(int k){
key = k;
left = right = null;

}
}

5

3 8

2

null null

null null null

SearchNode
key (type int)

left (type SearchNode) right (type SearchNode)

203

Baumknoten in Python

class SearchNode:
def __init__(self, k, l=None, r=None):

self.key = k
self.left, self.right = l, r
self.flagged = False

5

3 8

2

None None

None None None

SearchNode
key

left right

204

Binary search tree
A binary search tree is a binary tree that fulfils the search tree
property:

Every node v stores a key
Keys in left subtree v.left are smaller than v.key
Keys in right subtree v.right are greater than v.key

16

7

5

2

10

9 15

18

17 30

99

205

Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)→ null

206

Insertion of a key

Insertion of the key k
Search for k
If successful search: output
error
No success: replace the
reached leaf by a new node
with key

8

4

5

13

10

9

19

Insert (5)

207

Remove node

Three cases possible:
Node has no children
Node has one child
Node has two children

[Leaves do not count here]

8

3

5

4

13

10

9

19

208

Remove node

Node has no children
Simple case: replace node by leaf.

8

3

5

4

13

10

9

19

remove(4)−→

8

3

5

13

10

9

19

209

Remove node

Node has one child
Also simple: replace node by single child.

8

3

5

4

13

10

9

19

remove(3)−→

8

5

4

13

10

9

19

210

Remove node

Node has two children

The following observation helps: the
smallest key in the right subtree v.right
(the symmetric successor of v)

is smaller than all keys in v.right
is greater than all keys in v.left
and cannot have a left child.

Solution: replace v by its symmetric suc-
cessor.

8

3

5

4

13

10

9

19

211

By symmetry...

Node has two children

Also possible: replace v by its symmetric
predecessor.

8

3

5

4

13

10

9

19

212

Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v
w ← v.right
x← w.left
while x 6= null do

w ← x
x← x.left

return w

213

Traversal possibilities

preorder: v, then Tleft(v), then
Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then
v.
4, 5, 3, 9, 10, 19, 13, 8
inorder: Tleft(v), then v, then Tright(v).
3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

214

Height of a tree

The height h(T) of a tree T with root r is given by

h(r) =

{
0 if r = null
1 + max{h(r.left), h(r.right)} otherwise.

The worst case run time of the search is thus O(h(T))

215

Analysis

Search, Insertion and Deletion of an element v from a tree T
requires O(h(T)) fundamental steps in the worst case.

216

Possible Heights

1 The maximal height hn of a tree with n inner nodes is given with
h1 = 1 and hn+1 ≤ 1 + hn by hn ≥ n.

2 The minimal height hn of an (ideally balanced) tree with n inner
nodes fulfils n ≤

∑h−1
i=0 2i = 2h − 1.

Thus
dlog2(n+ 1)e ≤ h ≤ n

217

Further supported operations

Min(T): Read-out minimal value in
O(h)

ExtractMin(T): Read-out and remove
minimal value in O(h)

List(T): Output the sorted list of
elements
Join(T1, T2): Merge two trees with
max(T1) < min(T2) in O(n).

8

3

5

4

13

10

9

19

218

Degenerated search trees

9

5

4 8

13

10 19

Insert 9,5,13,4,8,10,19
ideally balanced

4

5

8

9

10

13

19

Insert 4,5,8,9,10,13,19
linear list

19

13

10

9

8

5

4

Insert 19,13,10,9,8,5,4
linear list

219

[Probabilistically]

A search tree constructed from a random sequence of numbers
provides an an expected path length of O(log n).

Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(

√
n).

Balanced trees make sure (e.g. with rotations) during insertion or
deletion that the tree stays balanced and provide a O(log n)
Worst-case guarantee.

(not shown in class) 220

[Max-]Heap8

Binary tree with the following prop-
erties

1 complete up to the lowest
level

2 Gaps (if any) of the tree in
the last level to the right

3 Heap-Condition:
Max-(Min-)Heap: key of a
child smaller (greater) that
that of the parent node

root

22

20

16

3 2

12

8 11

18

15

14

17

parent

child

8Heap(data structure), not: as in “heap and stack” (memory allocation)
221

Heap and Array

Tree→ Array:
children(i) = {2i, 2i+ 1}
parent(i) = bi/2c

22

1

20

2

18

3

16

4

12

5

15

6

17

7

3

8

2

9

8

10

11

11

14

12

parent

Children

22

20

16

3 2

12

8 11

18

15

14

17

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11] [12]

Depends on the starting index9

9For array that start at 0: {2i, 2i+ 1} → {2i+ 1, 2i+ 2}, bi/2c → b(i− 1)/2c
222

Height of a Heap
A complete binary tree with height10 h provides

1 + 2 + 4 + 8 + ...+ 2h−1 =
h−1∑
i=0

2i = 2h − 1

nodes. Thus for a heap with height h:

2h−1 − 1 < n ≤ 2h − 1

⇔ 2h−1 < n+ 1 ≤ 2h

Particularly h(n) = dlog2(n+ 1)e and h(n) ∈ Θ(log n).
10here: number of edges from the root to a leaf

223

Insert

Insert new element at the first free
position. Potentially violates the heap
property.
Reestablish heap property: climb
successively
Worst case number of operations:
O(log n)

22

20

16

3 2

12

8 11

18

15

14

17

224

Insert

Insert new element at the first free
position. Potentially violates the heap
property.

Reestablish heap property: climb
successively
Worst case number of operations:
O(log n)

22

20

16

3 2

12

8 11

18

15

14 21

17

224

Insert

Insert new element at the first free
position. Potentially violates the heap
property.
Reestablish heap property: climb
successively

Worst case number of operations:
O(log n)

22

20

16

3 2

12

8 11

18

21

14 15

17

224

Insert

Insert new element at the first free
position. Potentially violates the heap
property.
Reestablish heap property: climb
successively

Worst case number of operations:
O(log n)

22

20

16

3 2

12

8 11

21

18

14 15

17

224

Insert

Insert new element at the first free
position. Potentially violates the heap
property.
Reestablish heap property: climb
successively
Worst case number of operations:
O(log n)

22

20

16

3 2

12

8 11

21

18

14 15

17

224

Remove the maximum

Replace the maximum by the lower
right element
Reestablish heap property: sift down
successively (in the direction of the
greater child)
Worst case number of operations:
O(log n)

21

20

16

3 2

12

8 11

18

15

14

17

225

Remove the maximum

Replace the maximum by the lower
right element

Reestablish heap property: sift down
successively (in the direction of the
greater child)
Worst case number of operations:
O(log n)

14

20

16

3 2

12

8 11

18

15 17

225

Remove the maximum

Replace the maximum by the lower
right element
Reestablish heap property: sift down
successively (in the direction of the
greater child)

Worst case number of operations:
O(log n)

20

14

16

3 2

12

8 11

18

15 17

225

Remove the maximum

Replace the maximum by the lower
right element
Reestablish heap property: sift down
successively (in the direction of the
greater child)

Worst case number of operations:
O(log n)

20

16

14

3 2

12

8 11

18

15 17

225

Remove the maximum

Replace the maximum by the lower
right element
Reestablish heap property: sift down
successively (in the direction of the
greater child)
Worst case number of operations:
O(log n)

20

16

14

3 2

12

8 11

18

15 17

225

Algorithm SiftDown(A, i,m)
Input: Array A with heap structure for the children of i. Last element

m.
Output: Array A with heap structure for i with last element m.
while 2i ≤ m do

j ← 2i; // j left child
if j < m and A[j] < A[j + 1] then

j ← j + 1; // j right child with greater key

if A[i] < A[j] then
swap(A[i], A[j])
i← j; // keep sinking down

else
i← m; // sift down finished

226

Sort heap

A[1, ..., n] is a Heap.
While n > 1

swap(A[1], A[n])
SiftDown(A, 1, n− 1);
n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

227

Sort heap

A[1, ..., n] is a Heap.
While n > 1

swap(A[1], A[n])
SiftDown(A, 1, n− 1);
n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

227

Sort heap

A[1, ..., n] is a Heap.
While n > 1

swap(A[1], A[n])
SiftDown(A, 1, n− 1);
n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

227

Sort heap

A[1, ..., n] is a Heap.
While n > 1

swap(A[1], A[n])
SiftDown(A, 1, n− 1);
n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

227

Sort heap

A[1, ..., n] is a Heap.
While n > 1

swap(A[1], A[n])
SiftDown(A, 1, n− 1);
n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

227

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence:

Induction from below!

228

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

228

Algorithm HeapSort(A, n)

Input: Array A with length n.
Output: A sorted.
// Build the heap.
for i← n/2 downto 1 do

SiftDown(A, i, n);

// Now A is a heap.
for i← n downto 2 do

swap(A[1], A[i])
SiftDown(A, 1, i− 1)

// Now A is sorted.

229

Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node 2 key
comparisons. ⇒ sorting a heap costs in the worst case 2 log n
comparisons.

Number of memory movements of sorting a heap also O(n log n).

230

[Analysis: creating a heap]

Calls to siftDown: n/2. Thus number of comparisons and
movements: v(n) ∈ O(n log n).

But mean length of the sift-down paths is much smaller:

v(n) =

blognc∑
l=0

2l︸︷︷︸
number heaps on level l

· (blog nc − l)︸ ︷︷ ︸
height heaps on level l

=

blognc∑
k=0

2blognc−k · k

≤
blognc∑
k=0

n

2k
· k = n ·

blognc∑
k=0

k

2k
∈ O(n)

with s(x) :=
∑∞

k=0 kx
k = x

(1−x)2 (0 < x < 1) 11 and s(1
2
) = 2

11f(x) = 1
1−x

= 1 + x+ x2...⇒ f ′(x) = 1
(1−x)2

= 1 + 2x+ ...
(not shown in class) 231

[Analysis: creating a heap]

Calls to siftDown: n/2. Thus number of comparisons and
movements: v(n) ∈ O(n log n).
But mean length of the sift-down paths is much smaller:

v(n) =

blognc∑
l=0

2l︸︷︷︸
number heaps on level l

· (blog nc − l)︸ ︷︷ ︸
height heaps on level l

=

blognc∑
k=0

2blognc−k · k

≤
blognc∑
k=0

n

2k
· k = n ·

blognc∑
k=0

k

2k
∈ O(n)

with s(x) :=
∑∞

k=0 kx
k = x

(1−x)2 (0 < x < 1) 11 and s(1
2
) = 2

11f(x) = 1
1−x

= 1 + x+ x2...⇒ f ′(x) = 1
(1−x)2

= 1 + 2x+ ...
(not shown in class) 231

11. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al,
Kap. Problem 13-3]

232

Objective

Searching, insertion and removal of a key in a tree generated from n
keys inserted in random order takes expected number of steps
O(log2 n).

But worst case Θ(n) (degenerated tree).

Goal: avoidance of degeneration. Artificial balancing of the tree for
each update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of
O(log n).

Adelson-Venskii and Landis (1962): AVL-Trees

233

Balance of a node

The height balance of a node v is de-
fined as the height difference of its
sub-trees Tl(v) and Tr(v)

bal(v) := h(Tr(v))− h(Tl(v))

v

Tl(v)

Tr(v)

hl
hr

bal(v)

234

AVL Condition

AVL Condition: for eacn node v of a
tree bal(v) ∈ {−1, 0, 1}

v

Tl(v)

Tr(v)

h h+ 1

h+ 2

235

(Counter-)Examples

AVL tree with height
2 AVL tree with height

3 No AVL tree

236

Number of Leaves

1. observation: a binary search tree with n keys provides exactly
n+ 1 leaves. Simple induction argument.

The binary search tree with n = 0 keys has m = 1 leaves
When a key is added (n→ n+ 1), then it replaces a leaf and adds two
new leafs (m→ m− 1 + 2 = m+ 1).

2. observation: a lower bound of the number of leaves in a search
tree with given height implies an upper bound of the height of a
search tree with given number of keys.

237

Lower bound of the leaves

AVL tree with height 1 has
N(1) := 2 leaves.

AVL tree with height 2 has
at least N(2) := 3 leaves.

238

Lower bound of the leaves for h > 2

Height of one subtree ≥ h− 1.
Height of the other subtree ≥ h− 2.

Minimal number of leaves N(h) is

N(h) = N(h− 1) +N(h− 2)

v

Tl(v)

Tr(v)

h− 2 h− 1

h

Overal we have N(h) = Fh+2 with Fibonacci-numbers F0 := 0,
F1 := 1, Fn := Fn−1 + Fn−2 for n > 1.

239

Fibonacci Numbers, closed Form

It holds that

Fi =
1√
5

(φi − φ̂i)

with the roots φ, φ̂ of the golden ratio equation x2 − x− 1 = 0:

φ =
1 +
√

5

2
≈ 1.618

φ̂ =
1−
√

5

2
≈ −0.618

240

[Fibonacci Numbers, Inductive Proof]
Fi

!
= 1√

5
(φi − φ̂i) [∗]

(
φ = 1+

√
5

2 , φ̂ = 1−
√
5

2

)
.

1 Immediate for i = 0, i = 1.

2 Let i > 2 and claim [∗] true for all Fj , j < i.

Fi
def
= Fi−1 + Fi−2

[∗]
=

1√
5

(φi−1 − φ̂i−1) +
1√
5

(φi−2 − φ̂i−2)

=
1√
5

(φi−1 + φi−2)− 1√
5

(φ̂i−1 + φ̂i−2) =
1√
5
φi−2(φ+ 1)− 1√

5
φ̂i−2(φ̂+ 1)

(φ, φ̂ fulfil x+ 1 = x2)

=
1√
5
φi−2(φ2)− 1√

5
φ̂i−2(φ̂2) =

1√
5

(φi − φ̂i).

(not shown in class) 241

Tree Height
Because |φ̂| < 1, overal we have

N(h) ∈ Θ

(1 +
√

5

2

)h
 ⊆ Ω(1.618h)

and thus

N(h) ≥ c · 1.618h

⇒ h ≤ 1.44 log2 n+ c′.

An AVL tree is asymptotically not more than 44% higher than a
perfectly balanced tree.12

12The perfectly balanced tree has a height of dlog2 n+ 1e
242

Insertion

Balance

Keep the balance stored in each node
Re-balance the tree in each update-operation

New node n is inserted:

Insert the node as for a search tree.
Check the balance condition increasing from n to the root.

243

Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Finished in both cases because the subtree height did not change

244

Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)

245

upin(p) - invariant

When upin(p) is called it holds that

the subtree from p is grown and
bal(p) ∈ {−1,+1}

246

upin(p)

Assumption: p is left son of pp13

=⇒

pp +1 pp 0

p p

case 1: bal(pp) = +1, done.

=⇒

pp 0 pp −1

p p

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

13If p is a right son: symmetric cases with exchange of +1 and −1
247

upin(p)
Assumption: p is left son of pp

pp −1

p

case 3: bal(pp) = −1,

This case is problematic: adding n to the subtree from pp has
violated the AVL-condition. Re-balance!

Two cases bal(p) = −1, bal(p) = +1
248

Rotations
case 1.1 bal(p) = −1. 14

y

x

t1

t2

t3

pp −2

p −1

h

h− 1

h− 1

h+ 2 h

=⇒
rotation

right

x

y

t1 t2 t3

pp 0

p 0

h h− 1 h− 1

h+ 1 h+ 1

14p right son: ⇒ bal(pp) = bal(p) = +1, left rotation
249

Rotations
case 1.1 bal(p) = −1. 15

z

x

y

t1 t2 t3

t4

pp −2

p +1

h −1/+ 1

h− 1

h− 1

h− 2

h− 2

h− 1

h− 1

h+ 2 h

=⇒
double
rotation
left-right

y

x z

t1
t2 t3

t4

pp 0

0/− 1 +1/0

h− 1 h− 1

h− 2

h− 2

h− 1

h− 1

h+ 1

15p right son⇒ bal(pp) = +1, bal(p) = −1, double rotation right left
250

Analysis

Tree height: O(log n).
Insertion like in binary search tree.
Balancing via recursion from node to the root. Maximal path
lenght O(log n).

Insertion in an AVL-tree provides run time costs of O(log n).

251

Deletion
Case 1: Children of node n are both leaves Let p be parent node of
n. ⇒ Other subtree has height h′ = 0, 1 or 2.

h′ = 1: Adapt bal(p).
h′ = 0: Adapt bal(p). Call upout(p).
h′ = 2: Rebalanciere des Teilbaumes. Call upout(p).

p

n

h = 0, 1, 2

−→

p

h = 0, 1, 2

252

Deletion

Case 2: one child k of node n is an inner node

Replace n by k. upout(k)

p

n

k −→

p

k

253

Deletion

Case 3: both children of node n are inner nodes

Replace n by symmetric successor. upout(k)
Deletion of the symmetric successor is as in case 1 or 2.

254

upout(p)

Let pp be the parent node of p.

(a) p left child of pp

1 bal(pp) = −1 ⇒ bal(pp)← 0. upout(pp)
2 bal(pp) = 0 ⇒ bal(pp)← +1.
3 bal(pp) = +1⇒ next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and −1.

255

upout(p)
Case (a).3: bal(pp) = +1. Let q be brother of p
(a).3.1: bal(q) = 0.16

ypp +1

xp 0 zq 0

1 2

3 4

h− 1 h− 1

h+ 1 h+ 1

=⇒
Left Rotate(y)

z −1

y +1

x 0

1 2

3

4

h− 1 h− 1

h+ 1

h+ 1

16(b).3.1: bal(pp) = −1, bal(q) = −1, Right rotation 256

upout(p)
Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.17

ypp +1

xp 0 zq +1

1 2

3

4

h− 1 h− 1

h

h+ 1

=⇒
Left Rotate(y)

z 0r

y 0

x 0

1 2 3 4

h− 1 h− 1 h h+ 1

plus upout(r).

17(b).3.2: bal(pp) = −1, bal(q) = +1, Right rotation+upout
257

upout(p)
Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = −1.18

ypp +1

xp 0 zq −1

w

1 2

3 4

5
h− 1 h− 1

h

=⇒
Rotate right
(z) left (y)

w 0r

y 0

x

z

0

1 2 3 4 5

h− 1 h− 1 h

plus upout(r).
18(b).3.3: bal(pp) = −1, bal(q) = −1, left-right rotation + upout

258

Conclusion

AVL trees have worst-case asymptotic runtimes of O(log n) for
searching, insertion and deletion of keys.
Insertion and deletion is relatively involved and an overkill for
really small problems.

259

	Repetition Binary Search Trees and Heaps
	Search Trees
	Key Insertion
	Remove Key
	Tree Traversal

	AVL Trees
	Balance
	AVL Condition
	Fibonacci Numbers
	AVL Insert

