# 10. Repetition Binary Search Trees and Heaps

[Ottman/Widmayer, Kap. 2.3, 5.1, Cormen et al, Kap. 6, 12.1 - 12.3]

Disadvantages of hashing:

Disadvantages of hashing: linear access time in worst case. Some operations not supported at all:

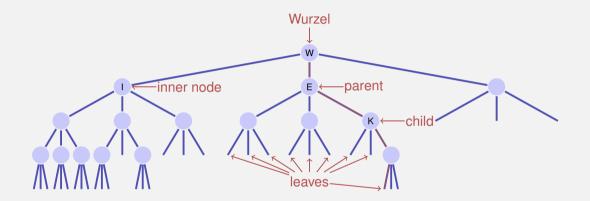
Disadvantages of hashing: linear access time in worst case. Some operations not supported at all:

enumerate keys in increasing order

Disadvantages of hashing: linear access time in worst case. Some operations not supported at all:

- enumerate keys in increasing order
- next smallest key to given key

### Nomenclature



Order of the tree: maximum number of child nodes, here: 3
Height of the tree: maximum path length root – leaf (here: 4)

# **Binary Trees**

A binary tree is either

- a leaf, i.e. an empty tree, or
- an inner leaf with two trees  $T_l$  (left subtree) and  $T_r$  (right subtree) as left and right successor.

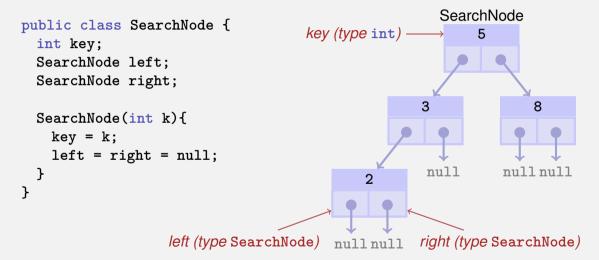


a key v.key and



- two nodes v.left and v.right to the roots of the left and right subtree.
- a leaf is represented by the **null**-pointer

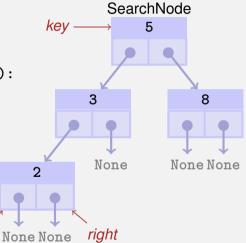
### Baumknoten in Java



### **Baumknoten in Python**

```
class SearchNode:
  def __init__(self, k, l=None, r=None):
     self.key = k
     self.left, self.right = l, r
     self.flagged = False
```

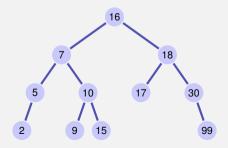
left



### **Binary search tree**

A binary search tree is a binary tree that fulfils the *search tree property*:

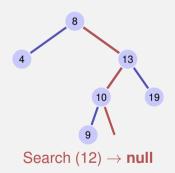
- Every node v stores a key
- Keys in left subtree v.left are smaller than v.key
- Keys in right subtree v.right are greater than v.key



# Searching

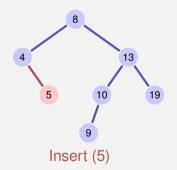
```
Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
v \leftarrow r
while v \neq null do
    if k = v.key then
         return v
    else if k < v.kev then
        v \leftarrow v.left
    else
      v \leftarrow v.right
```

return null



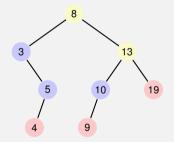
Insertion of the key k

- Search for k
- If successful search: output error
- No success: replace the reached leaf by a new node with key



Three cases possible:
Node has no children
Node has one child
Node has two children

[Leaves do not count here]



### **Remove node**

### Node has no children

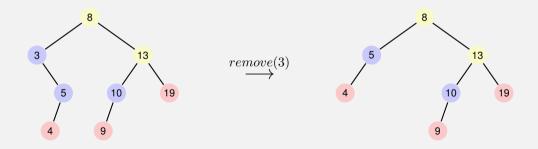
### Simple case: replace node by leaf.



### **Remove node**

### Node has one child

### Also simple: replace node by single child.



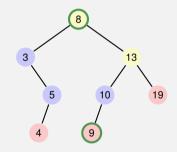
### **Remove node**

### Node has two children

The following observation helps: the smallest key in the right subtree v.right (the *symmetric successor* of v)

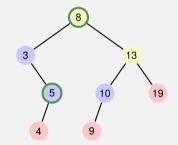
- is smaller than all keys in v.right
- is greater than all keys in v.left
- and cannot have a left child.

Solution: replace v by its symmetric successor.



Node has two children

Also possible: replace v by its symmetric predecessor.



# Algorithm SymmetricSuccessor(v)

```
Input: Node v of a binary search tree.

Output: Symmetric successor of v

w \leftarrow v.right

x \leftarrow w.left

while x \neq null do

w \leftarrow x

x \leftarrow x.left
```

#### return w

## **Traversal possibilities**

**preorder:** v, then  $T_{\text{left}}(v)$ , then  $T_{\text{right}}(v).$ 8 8, 3, 5, 4, 13, 10, 9, 19 3 **postorder**:  $T_{\text{left}}(v)$ , then  $T_{\text{right}}(v)$ , then v. 10 4, 5, 3, 9, 10, 19, 13, 8 inorder:  $T_{\text{left}}(v)$ , then v, then  $T_{\text{right}}(v)$ . 9 3. 4. 5. 8. 9. 10. 13. 19

13

### The height h(T) of a tree T with root r is given by

$$h(r) = \begin{cases} 0 & \text{if } r = \text{null} \\ 1 + \max\{h(r.\text{left}), h(r.\text{right})\} & \text{otherwise.} \end{cases}$$

The worst case run time of the search is thus  $\mathcal{O}(h(T))$ 



# Search, Insertion and Deletion of an element v from a tree T requires $\mathcal{O}(h(T))$ fundamental steps in the worst case.

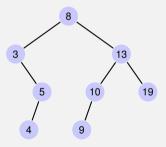
- 1 The maximal height  $h_n$  of a tree with n inner nodes is given with  $h_1 = 1$  and  $h_{n+1} \le 1 + h_n$  by  $h_n \ge n$ .
- 2 The minimal height  $h_n$  of an (ideally balanced) tree with n inner nodes fulfils  $n \leq \sum_{i=0}^{h-1} 2^i = 2^h 1$ .

Thus

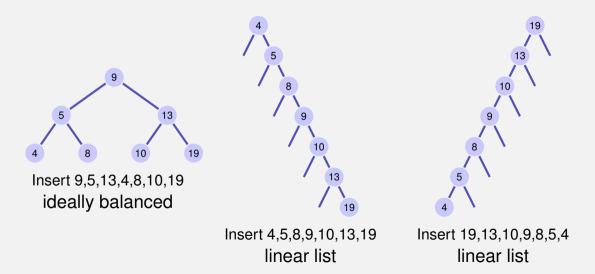
 $\lceil \log_2(n+1) \rceil \leq h \leq n$ 

## **Further supported operations**

- Min(*T*): Read-out minimal value in *O*(*h*)
- ExtractMin(*T*): Read-out and remove minimal value in *O*(*h*)
- List(T): Output the sorted list of elements
- Join $(T_1, T_2)$ : Merge two trees with  $\max(T_1) < \min(T_2)$  in  $\mathcal{O}(n)$ .



### **Degenerated search trees**

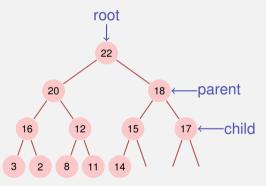


- A search tree constructed from a random sequence of numbers provides an an expected path length of  $O(\log n)$ .
- Attention: this only holds for insertions. If the tree is constructed by random insertions and deletions, the expected path length is  $\mathcal{O}(\sqrt{n})$ .
- *Balanced* trees make sure (e.g. with *rotations*) during insertion or deletion that the tree stays balanced and provide a  $O(\log n)$  Worst-case guarantee.

# [Max-]Heap<sup>8</sup>

Binary tree with the following properties

- complete up to the lowest level
- Gaps (if any) of the tree in the last level to the right
- Heap-Condition: Max-(Min-)Heap: key of a child smaller (greater) that that of the parent node



<sup>&</sup>lt;sup>8</sup>Heap(data structure), not: as in "heap and stack" (memory allocation)

# **Heap and Array**

Tree  $\rightarrow$  Array: • children $(i) = \{2i, 2i+1\}$  $parent(i) = \lfloor i/2 \rfloor$ parent 22 20 18 16 12 15 17 3 8 2 14 2 8 9 10 11 12 1 Children

22 [1]18 20 [3] [2]16 12 15 163 2 8 11 14 [8] [9] [10][11] [12]

Depends on the starting index<sup>9</sup>

<sup>9</sup>For array that start at 0:  $\{2i, 2i+1\} \rightarrow \{2i+1, 2i+2\}, \lfloor i/2 \rfloor \rightarrow \lfloor (i-1)/2 \rfloor$ 

## Height of a Heap

A complete binary tree with height<sup>10</sup> h provides

$$1 + 2 + 4 + 8 + \dots + 2^{h-1} = \sum_{i=0}^{h-1} 2^i = 2^h - 1$$

nodes. Thus for a heap with height h:

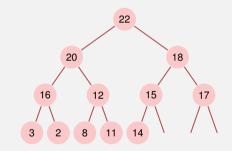
$$2^{h-1} - 1 < n \le 2^h - 1$$
  

$$\Rightarrow \qquad 2^{h-1} < n+1 \le 2^h$$

Particularly  $h(n) = \lceil \log_2(n+1) \rceil$  and  $h(n) \in \Theta(\log n)$ .

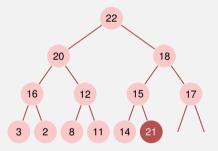
<sup>10</sup>here: number of edges from the root to a leaf

### Insert



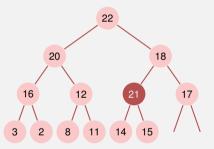


Insert new element at the first free position. Potentially violates the heap property.



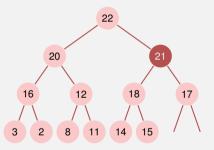


- Insert new element at the first free position. Potentially violates the heap property.
- Reestablish heap property: climb successively

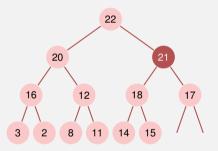




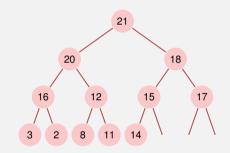
- Insert new element at the first free position. Potentially violates the heap property.
- Reestablish heap property: climb successively



- Insert new element at the first free position. Potentially violates the heap property.
- Reestablish heap property: climb successively
- Worst case number of operations:  $\mathcal{O}(\log n)$



### Remove the maximum



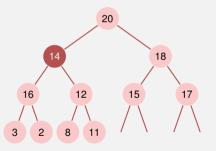
### **Remove the maximum**

### Replace the maximum by the lower right element



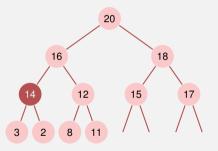
### **Remove the maximum**

- Replace the maximum by the lower right element
- Reestablish heap property: sift down successively (in the direction of the greater child)



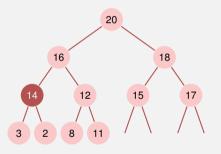
# **Remove the maximum**

- Replace the maximum by the lower right element
- Reestablish heap property: sift down successively (in the direction of the greater child)



# **Remove the maximum**

- Replace the maximum by the lower right element
- Reestablish heap property: sift down successively (in the direction of the greater child)
- Worst case number of operations:  $\mathcal{O}(\log n)$



# Algorithm SiftDown(A, i, m)

Input: Array A with heap structure for the children of i. Last element m.

**Output**: Array A with heap structure for i with last element m. while  $2i \le m$  do

```
j \leftarrow 2i; // j left child

if j < m and A[j] < A[j+1] then

\lfloor j \leftarrow j+1; // j right child with greater key

if A[i] < A[j] then

\| swap(A[i], A[j]) 

i \leftarrow j; // keep sinking down

else

\| i \leftarrow m; // sift down finished
```



- $\begin{array}{l} A[1,...,n] \text{ is a Heap.} \\ \text{While } n>1 \end{array}$
- **swap**(A[1], A[n])
- SiftDown(A, 1, n 1);

 $\blacksquare \ n \leftarrow n-1$ 

swap 
$$\Rightarrow$$
 2 6 4 5 1 2

 $\begin{array}{l} A[1,...,n] \text{ is a Heap.} \\ \text{While } n>1 \end{array}$ 

- swap(*A*[1], *A*[*n*])
- SiftDown(A, 1, n 1);

 $\blacksquare \ n \leftarrow n-1$ 

764512swap
$$\Rightarrow$$
264517siftDown $\Rightarrow$ 654217

 $\begin{array}{l} A[1,...,n] \text{ is a Heap.} \\ \text{While } n>1 \end{array}$ 

- swap(*A*[1], *A*[*n*])
- SiftDown(A, 1, n 1);

 $\blacksquare \ n \leftarrow n-1$ 

S

A[1, ..., n] is a Heap. While n > 1

■ swap(*A*[1], *A*[*n*])

 $n \leftarrow n-1$ 

- A[1, ..., n] is a Heap. While n > 1
- swap(A[1], A[n])

SiftDown
$$(A, 1, n - 1);$$

 $\square n \leftarrow n-1$ 

764512swap
$$\Rightarrow$$
264517siftDown $\Rightarrow$ 654217swap $\Rightarrow$ 154267siftDown $\Rightarrow$ 542167swap $\Rightarrow$ 142567siftDown $\Rightarrow$ 412567swap $\Rightarrow$ 214567siftDown $\Rightarrow$ 214567swap $\Rightarrow$ 124567swap $\Rightarrow$ 124567

S si

S

si

si

#### Observation: Every leaf of a heap is trivially a correct heap.

Consequence:

#### Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

# Algorithm HeapSort(A, n)

**Input**: Array A with length n. **Output**: A sorted. // Build the heap. for  $i \leftarrow n/2$  downto 1 do SiftDown(A, i, n); // Now A is a heap. for  $i \leftarrow n$  downto 2 do swap(A[1], A[i])SiftDown(A, 1, i - 1)// Now A is sorted.

- SiftDown traverses at most  $\log n$  nodes. For each node 2 key comparisons.  $\Rightarrow$  sorting a heap costs in the worst case  $2 \log n$  comparisons.
- Number of memory movements of sorting a heap also  $O(n \log n)$ .

# [Analysis: creating a heap]

Calls to siftDown: n/2. Thus number of comparisons and movements:  $v(n) \in \mathcal{O}(n \log n)$ .

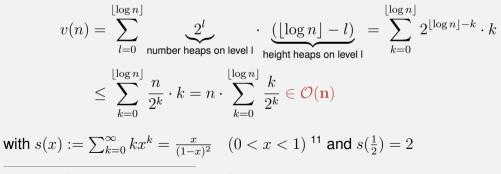
$${}^{11}f(x) = \frac{1}{1-x} = 1 + x + x^2 \dots \Rightarrow f'(x) = \frac{1}{(1-x)^2} = 1 + 2x + \dots$$

(not shown in class) 237

# [Analysis: creating a heap]

Calls to siftDown: n/2. Thus number of comparisons and movements:  $v(n) \in O(n \log n)$ .

But mean length of the sift-down paths is much smaller:



<sup>11</sup>
$$f(x) = \frac{1}{1-x} = 1 + x + x^2 \dots \Rightarrow f'(x) = \frac{1}{(1-x)^2} = 1 + 2x + \dots$$

(not shown in class) 231

# 11. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap. Problem 13-3]

# Objective

Searching, insertion and removal of a key in a tree generated from n keys inserted in random order takes expected number of steps  $\mathcal{O}(\log_2 n)$ .

But worst case  $\Theta(n)$  (degenerated tree).

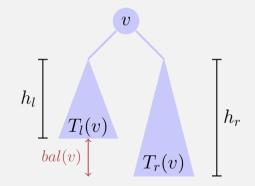
**Goal:** avoidance of degeneration. Artificial balancing of the tree for each update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of  $\mathcal{O}(\log n)$ .

Adelson-Venskii and Landis (1962): AVL-Trees

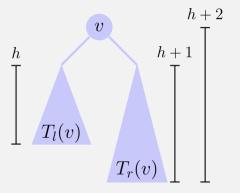
The height *balance* of a node v is defined as the height difference of its sub-trees  $T_l(v)$  and  $T_r(v)$ 

$$\operatorname{bal}(v) := h(T_r(v)) - h(T_l(v))$$

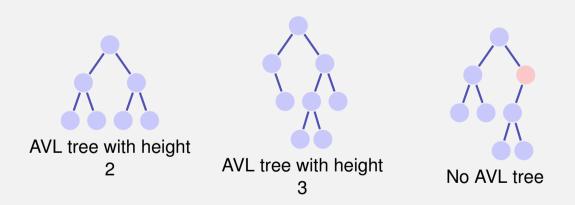


# **AVL Condition**

# AVL Condition: for each node v of a tree $bal(v) \in \{-1, 0, 1\}$



# (Counter-)Examples



- 1. observation: a binary search tree with n keys provides exactly n + 1 leaves. Simple induction argument.
  - The binary search tree with n = 0 keys has m = 1 leaves
  - When a key is added  $(n \rightarrow n+1)$ , then it replaces a leaf and adds two new leafs  $(m \rightarrow m-1+2=m+1)$ .
- 2. observation: a lower bound of the number of leaves in a search tree with given height implies an upper bound of the height of a search tree with given number of keys.

## Lower bound of the leaves

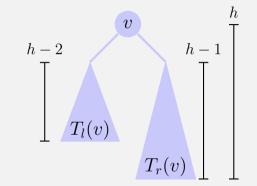
AVL tree with height 1 has 
$$N(1) := 2$$
 leaves.



## Lower bound of the leaves for h > 2

■ Height of one subtree ≥ h - 1.
■ Height of the other subtree ≥ h - 2.
Minimal number of leaves N(h) is

$$N(h) = N(h-1) + N(h-2)$$



Overal we have  $N(h) = F_{h+2}$  with *Fibonacci-numbers*  $F_0 := 0$ ,  $F_1 := 1$ ,  $F_n := F_{n-1} + F_{n-2}$  for n > 1.

## Fibonacci Numbers, closed Form

It holds that

$$F_i = \frac{1}{\sqrt{5}}(\phi^i - \hat{\phi}^i)$$

with the roots  $\phi, \hat{\phi}$  of the golden ratio equation  $x^2 - x - 1 = 0$ :

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$$
$$\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx -0.618$$

# [Fibonacci Numbers, Inductive Proof]

$$F_i \stackrel{!}{=} \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i) \quad [*] \quad \left(\phi = \frac{1 + \sqrt{5}}{2}, \hat{\phi} = \frac{1 - \sqrt{5}}{2}\right).$$

1 Immediate for i = 0, i = 1.

**2** Let i > 2 and claim [\*] true for all  $F_j$ , j < i.

$$F_{i} \stackrel{def}{=} F_{i-1} + F_{i-2} \stackrel{[*]}{=} \frac{1}{\sqrt{5}} (\phi^{i-1} - \hat{\phi}^{i-1}) + \frac{1}{\sqrt{5}} (\phi^{i-2} - \hat{\phi}^{i-2})$$
$$= \frac{1}{\sqrt{5}} (\phi^{i-1} + \phi^{i-2}) - \frac{1}{\sqrt{5}} (\hat{\phi}^{i-1} + \hat{\phi}^{i-2}) = \frac{1}{\sqrt{5}} \phi^{i-2} (\phi + 1) - \frac{1}{\sqrt{5}} \hat{\phi}^{i-2} (\hat{\phi} + 1)$$

 $(\phi, \hat{\phi} \text{ fulfil } x + 1 = x^2)$ 

$$=\frac{1}{\sqrt{5}}\phi^{i-2}(\phi^2) - \frac{1}{\sqrt{5}}\hat{\phi}^{i-2}(\hat{\phi}^2) = \frac{1}{\sqrt{5}}(\phi^i - \hat{\phi}^i).$$

# **Tree Height**

Because  $|\hat{\phi}| < 1$ , overal we have

$$N(h) \in \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^{h}\right) \subseteq \Omega(1.618^{h})$$

#### and thus

$$N(h) \ge c \cdot 1.618^h$$
  
$$\Rightarrow h \le 1.44 \log_2 n + c'.$$

# An AVL tree is asymptotically not more than 44% higher than a perfectly balanced tree.<sup>12</sup>

 $^{\rm 12}{\rm The}$  perfectly balanced tree has a height of  $\lceil \log_2 n + 1 \rceil$ 

#### Balance

- Keep the balance stored in each node
- Re-balance the tree in each update-operation

New node n is inserted:

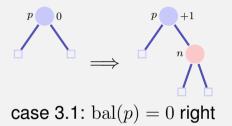
- Insert the node as for a search tree.
- Check the balance condition increasing from n to the root.

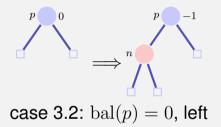
# **Balance at Insertion Point**



Finished in both cases because the subtree height did not change

## **Balance at Insertion Point**





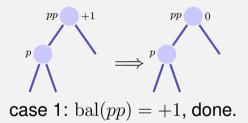
Not finished in both case. Call of upin(p)

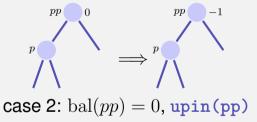
### When upin(p) is called it holds that

■ the subtree from p is grown and
■ bal(p) ∈ {-1, +1}

# upin(p)

### Assumption: p is left son of $pp^{13}$





#### In both cases the AVL-Condition holds for the subtree from pp

 $<sup>^{\</sup>rm 13}{\rm lf}\,p$  is a right son: symmetric cases with exchange of +1 and -1

# upin(p)

Assumption: p is left son of pp

case 3: bal(pp) = -1,

This case is problematic: adding n to the subtree from pp has violated the AVL-condition. Re-balance!

Two cases bal(p) = -1, bal(p) = +1

# **Rotations**

case 1.1 bal(p) = -1. <sup>14</sup> h+2ppy-2h+1h + 1pp x 0px\_1 y 0 protation  $t_3$ right h - 1 $t_2$  $t_1$  $t_2$  $t_3$ h-1 $t_1$ h-1h-1hh

<sup>14</sup>p right son:  $\Rightarrow$  bal(pp) = bal(p) = +1, left rotation

# **Rotations**

case 1.1 bal(p) = -1. <sup>15</sup> h+2hppz-2h + 1 $pp \quad y \quad 0$ p x+z + 1/0x 0/-1 $y_{-1/+1}$ hdouble  $t_4$ rotation h - 1left-right  $t_2$  $t_3$  $t_1$  $t_2$  $t_3$  $t_1$  $t_4$ h-1h - 1h - 1h-1h-2h - 1h-2h-2h-1h-2h-1

<sup>15</sup>p right son  $\Rightarrow$  bal(pp) = +1, bal(p) = -1, double rotation right left

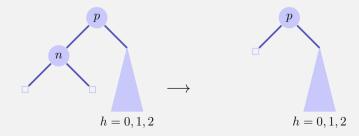
- Tree height:  $\mathcal{O}(\log n)$ .
- Insertion like in binary search tree.
- Balancing via recursion from node to the root. Maximal path lenght  $\mathcal{O}(\log n)$ .

Insertion in an AVL-tree provides run time costs of  $O(\log n)$ .

# Deletion

Case 1: Children of node n are both leaves Let p be parent node of  $n. \Rightarrow$  Other subtree has height h' = 0, 1 or 2.

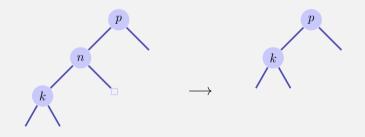
- h' = 1: Adapt bal(p).
- h' = 0: Adapt bal(p). Call upout (p).
- h' = 2: Rebalanciere des Teilbaumes. Call upout (p).



## Deletion

Case 2: one child k of node n is an inner node

**Replace** n by k. upout (k)



Case 3: both children of node n are inner nodes

- Replace n by symmetric successor. upout (k)
- Deletion of the symmetric successor is as in case 1 or 2.



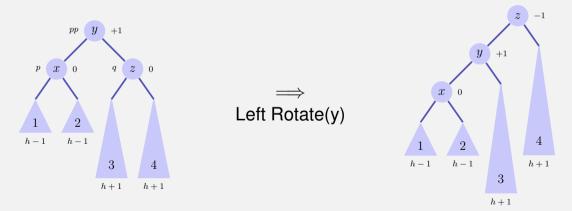
Let pp be the parent node of p.

(a) p left child of pp

(b) p right child of pp: Symmetric cases exchanging +1 and -1.

# upout(p)

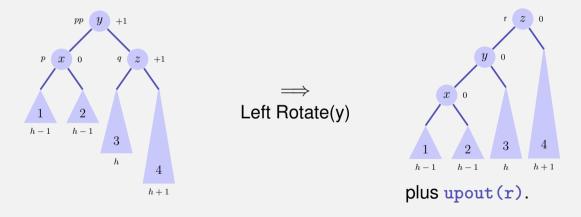
Case (a).3: bal(pp) = +1. Let q be brother of p (a).3.1: bal(q) = 0.<sup>16</sup>



<sup>16</sup>(b).3.1: bal(pp) = -1, bal(q) = -1, Right rotation

# upout(p)

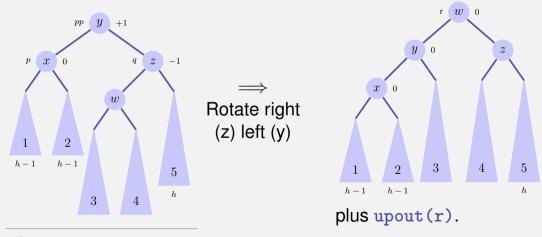
Case (a).3: 
$$bal(pp) = +1$$
. (a).3.2:  $bal(q) = +1.^{17}$ 



<sup>17</sup>(b).3.2: bal(pp) = -1, bal(q) = +1, Right rotation+upout

# upout(p)

Case (a).3: 
$$bal(pp) = +1$$
. (a).3.3:  $bal(q) = -1.^{18}$ 



<sup>18</sup>(b).3.3:  $\operatorname{bal}(pp) = -1$ ,  $\operatorname{bal}(q) = -1$ , left-right rotation + upout

# Conclusion

- AVL trees have worst-case asymptotic runtimes of O(log n) for searching, insertion and deletion of keys.
- Insertion and deletion is relatively involved and an overkill for really small problems.