10. Repetition Binary Search Trees and
Heaps

[Ottman/Widmayer, Kap. 2.3, 5.1, Cormen et al, Kap. 6, 12.1 - 12.3]

Nomenclature
Wurzel
|
e
| Inner noae E — ren
’///// I\\\\\\ ’/////I \\\\\\K +——Cth///////| \\\\\\\

/NN /N /N /N /DN
MMM A Ny |

leaves—
m Order of the tree: maximum number of child nodes, here: 3
m Height of the tree: maximum path length root — leaf (here: 4)

199

201

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

m enumerate keys in increasing order
m next smallest key to given key

Binary Trees

A binary tree is either

m a leaf, i.e. an empty tree, or

m an inner leaf with two trees T; (left subtree) and T, (right subtree)
as left and right successor.

In each node v we store key
left right

m a key v.key and
m two nodes v.left and v.right to the roots of the left and right
subtree.

m a leaf is represented by the null-pointer

200

202

Baumknoten in Java

SearchNode

public class SearchNode { key (type int) 5

int key;
SearchNode left;
SearchNode right;

3 8
SearchNode (int k){
key = k;
left = right = null;
} 9 null nullnull
}
left (type SearchNode) nullnull right (fype SearchNode)
203
Binary search tree

A binary search tree is a binary tree that fulfils the search tree
property:
m Every node v stores a key

m Keys in left subtree v.1left are smaller than v.key
m Keys in right subtree v.right are greater than v.key

7 / \18
5/ \10 17/ \30
[]\ \

2 99

205

Baumknoten in Python

SearchNode
key —— 5

class SearchNode:
def __init__(self, k, 1=None, r=None):
self .key = k 3 8
self.left, self.right =1, r
self.flagged = False

None None None

/ AN
left None None I’Ighf

204

Searching

Input: Binary search tree with root 7, key k&
Output: Node v with v.key = k or null
VT

while v # null do

"

if £k = v.key then
| return v / \
else if £ < v.key then 10 19
| v v.left /\
else 9
L L v« wright Search (12) — null
return null

206

Insertion of a key

Insertion of the key k
m Search for k

m If successful search: output

error
m No success: replace the

reached leaf by a new node

with key

Remove node

Node has no children

Simple case: replace node by leaf.

N
\ 10/ \19

5)

/]

4 9

remove(4)

Insert (5)

207

209

Remove node

Three cases possible:

m Node has no children
m Node has one child

m Node has two children

3
19

RN
\5 10/
4/

/

[Leaves do not count here] 9

208

Remove node

Node has one child
Also simple: replace node by single child.

3 / 8 \13
\ 10/ \19

remove(3) >
— /
5

/] /

4 9 9

210

Remove node

The following observation helps: the
smallest key in the right subtree v.right
(the symmetric successor of v) 3 13

m is smaller than all keys in v.right
m is greater than all keys in v.left
m and cannot have a left child.

Solution: replace v by its symmetric suc-
cessor.

Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v
w < v.right
x + w.left
while x # null do
W 4— T
x < x.left

return w

213

By symmetry...

Also possible: replace v by its symmetric
predecessor.

Traversal possibilities

m preorder: v, then Ti.(v), then
CTlright(v)-
8,3,5,4,13,10,9, 19

m postorder: Tie (v), then Thigne(v), then
v.

4,5,3,9,10, 19, 13,8

m inorder: Tics(v), then v, then Tign: (v).
3,4,5,8,9,10,13, 19

212

Height of a tree Analysis

The height h(T") of a tree T with root r is given by

0 if » = null Search, Insertion and Deletion of an element v from a tree T
(r) = 1 + max{h(rleft), h(r.right)} otherwise. requires O(h(T')) fundamental steps in the worst case.

The worst case run time of the search is thus O(h(T))

Possible Heights Further supported operations

m Min(T): Read-out minimal value in
The maximal height h,, of a tree with n inner nodes is given with O(h)

8
hi = 1and 1 < 14 hy, by hy > 0. m ExtractMin(7): Read-out and remove N
The minimal height A,, of an (ideally balanced) tree with n inner minimal value in O(h) 3 13
nodes fulfils n < 37 2 = 2" — 1. m List(T"): Output the sorted list of \5 10/ \19
Thus elements / /
[logy(n +1)] <h <n m Join(71, T3): Merge two trees with 4 2

max(71) < min(73) in O(n).

Degenerated search trees

4

0 / \8
5/ \13 / \9
/N /\ /N
4 8 10 19 / \
Insert 9,5,13,4,8,10,19 13\
ideally balanced / i
Insert 4,5,8,9,10,13,19
linear list

[Max-]Heap®

Binary tree with the following prop-
erties

complete up to the lowest
level

Gaps (if any) of the tree in
the last level to the right

Heap-Condition:
Max-(Min-)Heap: key of a
child smaller (greater) that
that of the parent node

8Heap(data structure), not: as in “heap and stack” (memory allocation)

[\

19
13/ \
10/ \
&\
i\
g\
4/ \
Insert 19,13,10,9,8,5,4
linear list

219

root

l

22

20/ 1
16/ \12 15/ 3
\11 14/\ /\

8 «——parent

17 «—cbhild

221

[Probabilistically]

A search tree constructed from a random sequence of numbers
provides an an expected path length of O(logn).

Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(y/n).

Balanced trees make sure (e.g. with rotations) during insertion or
deletion that the tree stays balanced and provide a O(logn)

Worst-case guarantee.

Heap and Array

Tree — Array:
m children(i) = {24,2i + 1}
m parent(i) = [i/2]

parent

‘22|20|18”16”12”15“17“3|2|8|11|14‘
12 4 5 8 9 10 11 12

Children

Depends on the starting index®

9For array that start at 0: {24,2i + 1} — {2 + 1, 2i + 2}, [i/2
y

22
LN
18

20

/2I\ /1BI\
16 12 15 17
fa\ N fe 7
3 2 8 11 14 I\ /I\
8] 9] [10] [11] [12]

— (i —-1)/2]
222

Height of a Heap

A complete binary tree with height'® h provides

h—1
1+2+4+8+...+2h‘1:Z2i:2h—1
=0

nodes. Thus for a heap with height h:

o=l _1<p<oh—1
= =l e n+1<2k

Particularly h(n) = [logy(n + 1)] and h(n) € O(logn).

Ohere: number of edges from the root to a leaf

Remove the maximum

m Replace the maximum by the lower
right element

m Reestablish heap property: sift down
successively (in the direction of the
greater child)

m Worst case number of operations:
O(logn)

20/ \18
16/ \12 15/ \17

[\ /N /\ /\
)
o e
0/ \1 15/ \17
ANEVA /\ /\

223

225

Insert

m Insert new element at the first free
position. Potentially violates the heap
property.

m Reestablish heap property: climb
successively

m Worst case number of operations:
O(logn)

Algorithm SiftDown(A, i, m)

16

20/ \18
/ \12

" e

/ N\
[\ /\ /\

SN N
[\ /\ /)
3 2 8 11 14@/\

Input: Array A with heap structure for the children of 7. Last element
m.
Output: Array A with heap structure for ¢ with last element m.

while 2 < m do
j «2i; // j left child
if j <m and A[j] < A[j + 1] then

if Ali] < A[j] then
swap(Ali], A[j])
i < 7, // keep sinking down
else
| i 4= m; // sift down finished

L j < j+1;// jright child with greater key

224

226

Sort heap

All,...,n] is a Heap.
Whilen > 1

m swap(A[l], A[n])

m SiftDown(A,1,n — 1);
En+<n-—1

swap
siftDown
swap
siftDown
swap
siftDown
swap
siftDown
swap

Algorithm HeapSort(A, n)

Input: Array A with length n.
Output: A sorted.
// Build the heap.
for i < n/2 downto 1 do
 SiftDown(A4, 7, n);
// Now A is a heap.
for i < n downto 2 do
swap(A[1], A[i])
SiftDown(A, 1,7 — 1)

// Now A is sorted.

R R N R R

NN A= 0= 00N N

227

229

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node 2 key
comparisons. = sorting a heap costs in the worst case 2logn
comparisons.

Number of memory movements of sorting a heap also O(nlogn).

228

230

[Analysis: creating a heap]

Calls to siftDown: n/2. Thus number of comparisons and
movements: v(n) € O(nlogn).
But mean length of the sift-down paths is much smaller:

[logn] |logn|
v(n)= > 9! - (llogn) —1) = Y allenlk.g
S~~~ N—
=0 number heaps on level | height heaps on level | k=0
|logn| n |logn| k
< ; o k=n ; o € O(n)

with 8(37) = Zzio kmk - (1,2)2 (0 <zr< 1) " and S(%) =2

ﬁ,/'(ﬂ(') = I% =l4+z+22.. = fl(z) = ﬁ =142z + ...

(not shown in class) 231

Objective

Searching, insertion and removal of a key in a tree generated from n
keys inserted in random order takes expected number of steps
O(logy n).

But worst case ©(n) (degenerated tree).

Goal: avoidance of degeneration. Artificial balancing of the tree for
each update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of
O(logn).

Adelson-Venskii and Landis (1962): AVL-Trees

233

11. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al,

Kap. Problem 13-3]

Balance of a node

The height balance of a node v is de-
fined as the height difference of its
sub-trees T;(v) and T,.(v)

bal(v) := h(T,(v)) — h(Ti(v))

232

234

AVL Condition
h+2
’U _
h h+1
AVL Condition: for eacn node v of a
tree bal(v) € {—1,0,1}
Ti(v)
T.(v) 1 |

235

Number of Leaves

m 1. observation: a binary search tree with n keys provides exactly
n + 1 leaves. Simple induction argument.

m The binary search tree with n = 0 keys has m = 1 leaves
m When a key is added (n — n + 1), then it replaces a leaf and adds two
newleafs (m - m—1+2=m+1).

m 2. observation: a lower bound of the number of leaves in a search
tree with given height implies an upper bound of the height of a
search tree with given number of keys.

(Counter-)Examples

2\ /N /\
\ /N
ANA N
/\ N\
AVL tree with height . _
2 AVL tree \éwth height No AVL tree

Lower bound of the leaves

/ N\

AVL tree with height 1 has
N(1) := 2 leaves.

/N /\
/\ /\
/' \

[\ /N

AVL tree with height 2 has
at least N(2) := 3 leaves.

238

Lower bound of the leaves for h > 2

m Height of one subtree > h — 1. b2 ho1
m Height of the other subtree > h — 2.
Minimal number of leaves N (h) is

N(h) = N(h—1)+ N(h—2)

Overal we have N(h) = Fj,o with Fibonacci-numbers Fy := 0,
Fr=1F,=F, 1+ F, sforn>1.

[Fibonacci Numbers, Inductive Proof]
F= %6 -4¢) [

B Immediate fori = 0,7 = 1.

Let i > 2 and claim [«] true for all F}, j < i.

ef * 1
FYF +F, -

(72— ¢™?)
RS

V5

i-1 i1
(67 ="+ =

Sl
S

_ 1
G
(¢, ¢ fulfil z + 1 = 22)
_ 1

\/5¢i—2(¢2) -

S

N
\/5¢ (¢+1)

P (o + 1)

(¢i—1 +¢i—2) - 15(¢Ei—1 + ¢Ei—2)

%¢i_2(¢2) =

Fibonacci Numbers, closed Form

It holds that
Fi= ('~ &)
RV
with the roots ¢, ¢ of the golden ratio equation 2> — z — 1 = 0:
1 5
6= +2f ~ 1.618
. 1=
2
Tree Height

Because |¢| < 1, overal we have
1+ v5\"
N(h) €© ((+2 5)) C Q(1.618")

N(h) > c-1.618"
= h<144logyn +¢.

and thus

An AVL tree is asymptotically not more than 44% higher than a
perfectly balanced tree.'?

12The perfectly balanced tree has a height of [log, n + 1]

242

Insertion

Balance

m Keep the balance stored in each node
m Re-balance the tree in each update-operation

New node n is inserted:

m Insert the node as for a search tree.
m Check the balance condition increasing from n to the root.

243

Balance at Insertion Point

/NN
=

case 3.1: bal(p) = 0 right

/NN
=\

case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)

Balance at Insertion Point

/N /N /NN
AT A A

case 1: bal(p) = +1 case 2: bal(p) = —1

Finished in both cases because the subtree height did not change

244

upin(p) - invariant

When upin(p) is called it holds that

m the subtree from p is grown and
m bal(p) € {—1,+1}

246

upin(p)

Assumption: p is left son of pp'3
pp +1

ANEEVAN
/AN A

case 1: bal(pp) = +1, done.

SN N
AT

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

3If p is a right son: symmetric cases with exchange of 41 and —1

Rotations

case 1.1 bal(p) = —1. ™

h+2 h

pp Y 2
P xr -1

45 right son: = bal(pp) = bal(p) = +1, left rotation

7N\ =

s rotation
- right

h+1 h+1

247

249

upin(p)

Assumption: p is left son of pp

AN
/\

case 3: bal(pp) = —1,

This case is problematic: adding n to the subtree from pp has
violated the AVL-condition. Re-balance!

Two cases bal(p) = —1, bal(p) = +1

Rotations

case 1.1 bal(p) = —1. 1

h+2 h

248

Pz -2 h+1
/ \ pp Y 0
p T +1
\ - xr 0/-1 Z +1/0
. GAE double / \ / \
/ \ ta | rotation
het left-right
t S ; lo i3
/2,
W1 3 tl t4 |
4 h—1 h— h— h—1
h—1 h—2 h—2 h—1
h—2 h—1
5p right son = bal(pp) = +1, bal(p) = —1, double rotation right left

250

Analysis

m Tree height: O(logn).
m Insertion like in binary search tree.

m Balancing via recursion from node to the root. Maximal path
lenght O(logn).

Insertion in an AVL-tree provides run time costs of O(logn).

Deletion

Case 2: one child k& of node n is an inner node

m Replace n by k. upout (k)

N N
N /\
/ \

Deletion

Case 1: Children of node n are both leaves Let p be parent node of
n. = Other subtree has height 4’ = 0, 1 or 2.

m i/ = 1: Adapt bal(p).
m 7' = 0: Adapt bal(p). Call upout (p).
m 7' = 2: Rebalanciere des Teilbaumes. Call upout (p).

N N
/N

h=0,1,2 h=0,1,2

Deletion

Case 3: both children of node n are inner nodes

m Replace n by symmetric successor. upout (k)
m Deletion of the symmetric successor is as in case 1 or 2.

upout (p)

Let pp be the parent node of p.

(a) p left child of pp
| bal(pp) = —1 = bal(pp) < 0. upout (pp)

bal(pp) =0 = bal(pp) + +1.
bal(pp) = +1 = next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and —1.

Yy o
7\
xr 0
/' \
1 2 3
h—1 h—1 h

plus upout (r).

upout (p)
Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1."7
N
/NN _
1 2 Left Rotate(y)
h—1 h—1 3
S
7(b).3.2: bal(pp) = —1, bal(q) = +1, Right rotation+upout

255

257

upout (p)

Case (a).3: bal(pp) = +1. Let g be brother of p
(a).3.1: bal(q) = 0.1°

p T 0

/N /' N\

e Y +1

RN

a Z 0

—

Left Rotate(y)

1 2
h—1 h—1
3
h+1 h+1
8(b).3.1: bal(pp) = —1, bal(q) = —1, Right rotation
upout (p)

Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = —1."8

/\

oY+l

q

N
\

z -1

Rotate right
(2) left (y)

8(b).3.3: bal(pp) =

1, bal(q) = —1, left-right rotation + upout

28 —1
7N\
Yy +1
7N\
X o0
/ N\
1 2 4
h—1 h—1 h41
3
h+1
256
r-w o
yo/\z

T 0
/ N\
1 2 3 4)
h—1 h—1 h

plus upout (r).

258

Conclusion

m AVL trees have worst-case asymptotic runtimes of O(logn) for
searching, insertion and deletion of keys.

m Insertion and deletion is relatively involved and an overkill for
really small problems.

