
10. Repetition Binary Search Trees and
Heaps

[Ottman/Widmayer, Kap. 2.3, 5.1, Cormen et al, Kap. 6, 12.1 - 12.3]
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Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key
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Nomenclature

Wurzel

W

I E

K

parent

child

inner node

leaves

Order of the tree: maximum number of child nodes, here: 3
Height of the tree: maximum path length root – leaf (here: 4)
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Binary Trees
A binary tree is either

a leaf, i.e. an empty tree, or
an inner leaf with two trees Tl (left subtree) and Tr (right subtree)
as left and right successor.

In each node v we store

a key v.key and
two nodes v.left and v.right to the roots of the left and right
subtree.
a leaf is represented by the null-pointer

key

left right
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Baumknoten in Java

public class SearchNode {
int key;
SearchNode left;
SearchNode right;

SearchNode(int k){
key = k;
left = right = null;

}
}

5

3 8

2

null null

null null null

SearchNode
key (type int)

left (type SearchNode) right (type SearchNode)
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Baumknoten in Python

class SearchNode:
def __init__(self, k, l=None, r=None):

self.key = k
self.left, self.right = l, r
self.flagged = False

5

3 8

2

None None

None None None

SearchNode
key

left right
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Binary search tree
A binary search tree is a binary tree that fulfils the search tree
property:

Every node v stores a key
Keys in left subtree v.left are smaller than v.key
Keys in right subtree v.right are greater than v.key

16
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5

2

10

9 15

18

17 30
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Searching

Input: Binary search tree with root r, key k
Output: Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)→ null
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Insertion of a key

Insertion of the key k
Search for k
If successful search: output
error
No success: replace the
reached leaf by a new node
with key
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9

19

Insert (5)
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Remove node

Three cases possible:
Node has no children
Node has one child
Node has two children

[Leaves do not count here]
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Remove node

Node has no children
Simple case: replace node by leaf.
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remove(4)−→
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Remove node

Node has one child
Also simple: replace node by single child.
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remove(3)−→
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Remove node

Node has two children

The following observation helps: the
smallest key in the right subtree v.right
(the symmetric successor of v)

is smaller than all keys in v.right
is greater than all keys in v.left
and cannot have a left child.

Solution: replace v by its symmetric suc-
cessor.
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By symmetry...

Node has two children

Also possible: replace v by its symmetric
predecessor.
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Algorithm SymmetricSuccessor(v)

Input: Node v of a binary search tree.
Output: Symmetric successor of v
w ← v.right
x← w.left
while x 6= null do

w ← x
x← x.left

return w
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Traversal possibilities

preorder: v, then Tleft(v), then
Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then
v.
4, 5, 3, 9, 10, 19, 13, 8
inorder: Tleft(v), then v, then Tright(v).
3, 4, 5, 8, 9, 10, 13, 19
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Height of a tree

The height h(T ) of a tree T with root r is given by

h(r) =

{
0 if r = null
1 + max{h(r.left), h(r.right)} otherwise.

The worst case run time of the search is thus O(h(T ))
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Analysis

Search, Insertion and Deletion of an element v from a tree T
requires O(h(T )) fundamental steps in the worst case.
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Possible Heights

1 The maximal height hn of a tree with n inner nodes is given with
h1 = 1 and hn+1 ≤ 1 + hn by hn ≥ n.

2 The minimal height hn of an (ideally balanced) tree with n inner
nodes fulfils n ≤∑h−1

i=0 2i = 2h − 1.

Thus
dlog2(n+ 1)e ≤ h ≤ n
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Further supported operations

Min(T ): Read-out minimal value in
O(h)

ExtractMin(T ): Read-out and remove
minimal value in O(h)

List(T ): Output the sorted list of
elements
Join(T1, T2): Merge two trees with
max(T1) < min(T2) in O(n).
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Degenerated search trees

9
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4 8

13

10 19

Insert 9,5,13,4,8,10,19
ideally balanced
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Insert 4,5,8,9,10,13,19
linear list
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Insert 19,13,10,9,8,5,4
linear list
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[Probabilistically]

A search tree constructed from a random sequence of numbers
provides an an expected path length of O(log n).

Attention: this only holds for insertions. If the tree is constructed by
random insertions and deletions, the expected path length is O(

√
n).

Balanced trees make sure (e.g. with rotations) during insertion or
deletion that the tree stays balanced and provide a O(log n)
Worst-case guarantee.
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[Max-]Heap8

Binary tree with the following prop-
erties

1 complete up to the lowest
level

2 Gaps (if any) of the tree in
the last level to the right

3 Heap-Condition:
Max-(Min-)Heap: key of a
child smaller (greater) that
that of the parent node

root
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parent

child

8Heap(data structure), not: as in “heap and stack” (memory allocation)
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Heap and Array

Tree→ Array:
children(i) = {2i, 2i+ 1}
parent(i) = bi/2c
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[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11] [12]

Depends on the starting index9

9For array that start at 0: {2i, 2i+ 1} → {2i+ 1, 2i+ 2}, bi/2c → b(i− 1)/2c
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Height of a Heap
A complete binary tree with height10 h provides

1 + 2 + 4 + 8 + ...+ 2h−1 =
h−1∑

i=0

2i = 2h − 1

nodes. Thus for a heap with height h:

2h−1 − 1 < n ≤ 2h − 1

⇔ 2h−1 < n+ 1 ≤ 2h

Particularly h(n) = dlog2(n+ 1)e and h(n) ∈ Θ(log n).
10here: number of edges from the root to a leaf
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Insert

Insert new element at the first free
position. Potentially violates the heap
property.
Reestablish heap property: climb
successively
Worst case number of operations:
O(log n)
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Remove the maximum

Replace the maximum by the lower
right element
Reestablish heap property: sift down
successively (in the direction of the
greater child)
Worst case number of operations:
O(log n)
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Algorithm SiftDown(A, i,m)
Input: Array A with heap structure for the children of i. Last element

m.
Output: Array A with heap structure for i with last element m.
while 2i ≤ m do

j ← 2i; // j left child
if j < m and A[j] < A[j + 1] then

j ← j + 1; // j right child with greater key

if A[i] < A[j] then
swap(A[i], A[j])
i← j; // keep sinking down

else
i← m; // sift down finished
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Sort heap

A[1, ..., n] is a Heap.
While n > 1

swap(A[1], A[n])
SiftDown(A, 1, n− 1);
n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

siftDown ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

siftDown ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

siftDown ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

siftDown ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7
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Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!
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Algorithm HeapSort(A, n)

Input: Array A with length n.
Output: A sorted.
// Build the heap.
for i← n/2 downto 1 do

SiftDown(A, i, n);

// Now A is a heap.
for i← n downto 2 do

swap(A[1], A[i])
SiftDown(A, 1, i− 1)

// Now A is sorted.
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Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node 2 key
comparisons. ⇒ sorting a heap costs in the worst case 2 log n
comparisons.

Number of memory movements of sorting a heap also O(n log n).
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[Analysis: creating a heap]

Calls to siftDown: n/2. Thus number of comparisons and
movements: v(n) ∈ O(n log n).
But mean length of the sift-down paths is much smaller:

v(n) =

blognc∑

l=0

2l
︸︷︷︸

number heaps on level l

· (blog nc − l)︸ ︷︷ ︸
height heaps on level l

=

blognc∑

k=0

2blognc−k · k

≤
blognc∑

k=0

n

2k
· k = n ·

blognc∑

k=0

k

2k
∈ O(n)

with s(x) :=
∑∞

k=0 kx
k = x

(1−x)2 (0 < x < 1) 11 and s(1
2
) = 2

11f(x) = 1
1−x

= 1 + x+ x2...⇒ f ′(x) = 1
(1−x)2

= 1 + 2x+ ...
(not shown in class) 231

11. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al,
Kap. Problem 13-3]

232

Objective

Searching, insertion and removal of a key in a tree generated from n
keys inserted in random order takes expected number of steps
O(log2 n).

But worst case Θ(n) (degenerated tree).

Goal: avoidance of degeneration. Artificial balancing of the tree for
each update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of
O(log n).

Adelson-Venskii and Landis (1962): AVL-Trees
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Balance of a node

The height balance of a node v is de-
fined as the height difference of its
sub-trees Tl(v) and Tr(v)

bal(v) := h(Tr(v))− h(Tl(v))

v

Tl(v)

Tr(v)

hl
hr

bal(v)
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AVL Condition

AVL Condition: for eacn node v of a
tree bal(v) ∈ {−1, 0, 1}

v

Tl(v)

Tr(v)

h h+ 1

h+ 2
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(Counter-)Examples

AVL tree with height
2 AVL tree with height

3 No AVL tree
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Number of Leaves

1. observation: a binary search tree with n keys provides exactly
n+ 1 leaves. Simple induction argument.

The binary search tree with n = 0 keys has m = 1 leaves
When a key is added (n→ n+ 1), then it replaces a leaf and adds two
new leafs (m→ m− 1 + 2 = m+ 1).

2. observation: a lower bound of the number of leaves in a search
tree with given height implies an upper bound of the height of a
search tree with given number of keys.
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Lower bound of the leaves

AVL tree with height 1 has
N(1) := 2 leaves.

AVL tree with height 2 has
at least N(2) := 3 leaves.

238



Lower bound of the leaves for h > 2

Height of one subtree ≥ h− 1.
Height of the other subtree ≥ h− 2.

Minimal number of leaves N(h) is

N(h) = N(h− 1) +N(h− 2)

v

Tl(v)

Tr(v)

h− 2 h− 1

h

Overal we have N(h) = Fh+2 with Fibonacci-numbers F0 := 0,
F1 := 1, Fn := Fn−1 + Fn−2 for n > 1.
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Fibonacci Numbers, closed Form

It holds that

Fi =
1√
5

(φi − φ̂i)

with the roots φ, φ̂ of the golden ratio equation x2 − x− 1 = 0:

φ =
1 +
√

5

2
≈ 1.618

φ̂ =
1−
√

5

2
≈ −0.618
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[Fibonacci Numbers, Inductive Proof]
Fi

!
= 1√

5
(φi − φ̂i) [∗]

(
φ = 1+

√
5

2 , φ̂ = 1−
√
5

2

)
.

1 Immediate for i = 0, i = 1.

2 Let i > 2 and claim [∗] true for all Fj , j < i.

Fi
def
= Fi−1 + Fi−2

[∗]
=

1√
5

(φi−1 − φ̂i−1) +
1√
5

(φi−2 − φ̂i−2)

=
1√
5

(φi−1 + φi−2)− 1√
5

(φ̂i−1 + φ̂i−2) =
1√
5
φi−2(φ+ 1)− 1√

5
φ̂i−2(φ̂+ 1)

(φ, φ̂ fulfil x+ 1 = x2)

=
1√
5
φi−2(φ2)− 1√

5
φ̂i−2(φ̂2) =

1√
5

(φi − φ̂i).

(not shown in class) 241

Tree Height
Because |φ̂| < 1, overal we have

N(h) ∈ Θ



(

1 +
√

5

2

)h

 ⊆ Ω(1.618h)

and thus

N(h) ≥ c · 1.618h

⇒ h ≤ 1.44 log2 n+ c′.

An AVL tree is asymptotically not more than 44% higher than a
perfectly balanced tree.12

12The perfectly balanced tree has a height of dlog2 n+ 1e
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Insertion

Balance

Keep the balance stored in each node
Re-balance the tree in each update-operation

New node n is inserted:

Insert the node as for a search tree.
Check the balance condition increasing from n to the root.

243

Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Finished in both cases because the subtree height did not change
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Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)

245

upin(p) - invariant

When upin(p) is called it holds that

the subtree from p is grown and
bal(p) ∈ {−1,+1}
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upin(p)

Assumption: p is left son of pp13

=⇒

pp +1 pp 0

p p

case 1: bal(pp) = +1, done.

=⇒

pp 0 pp −1

p p

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

13If p is a right son: symmetric cases with exchange of +1 and −1
247

upin(p)
Assumption: p is left son of pp

pp −1

p

case 3: bal(pp) = −1,

This case is problematic: adding n to the subtree from pp has
violated the AVL-condition. Re-balance!

Two cases bal(p) = −1, bal(p) = +1
248

Rotations
case 1.1 bal(p) = −1. 14

y

x

t1

t2

t3

pp −2

p −1

h

h− 1

h− 1

h+ 2 h

=⇒
rotation

right

x

y

t1 t2 t3

pp 0

p 0

h h− 1 h− 1

h+ 1 h+ 1

14p right son: ⇒ bal(pp) = bal(p) = +1, left rotation
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Rotations
case 1.1 bal(p) = −1. 15

z

x

y

t1 t2 t3

t4

pp −2

p +1

h −1/+ 1

h− 1

h− 1

h− 2

h− 2

h− 1

h− 1

h+ 2 h

=⇒
double
rotation
left-right

y

x z

t1
t2 t3

t4

pp 0

0/− 1 +1/0

h− 1 h− 1

h− 2

h− 2

h− 1

h− 1

h+ 1

15p right son⇒ bal(pp) = +1, bal(p) = −1, double rotation right left
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Analysis

Tree height: O(log n).
Insertion like in binary search tree.
Balancing via recursion from node to the root. Maximal path
lenght O(log n).

Insertion in an AVL-tree provides run time costs of O(log n).

251

Deletion
Case 1: Children of node n are both leaves Let p be parent node of
n. ⇒ Other subtree has height h′ = 0, 1 or 2.

h′ = 1: Adapt bal(p).
h′ = 0: Adapt bal(p). Call upout(p).
h′ = 2: Rebalanciere des Teilbaumes. Call upout(p).

p

n

h = 0, 1, 2

−→

p

h = 0, 1, 2
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Deletion

Case 2: one child k of node n is an inner node

Replace n by k. upout(k)

p

n

k −→

p

k
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Deletion

Case 3: both children of node n are inner nodes

Replace n by symmetric successor. upout(k)
Deletion of the symmetric successor is as in case 1 or 2.
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upout(p)

Let pp be the parent node of p.

(a) p left child of pp

1 bal(pp) = −1 ⇒ bal(pp)← 0. upout(pp)
2 bal(pp) = 0 ⇒ bal(pp)← +1.
3 bal(pp) = +1⇒ next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and −1.
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upout(p)
Case (a).3: bal(pp) = +1. Let q be brother of p
(a).3.1: bal(q) = 0.16

ypp +1

xp 0 zq 0

1 2

3 4

h− 1 h− 1

h+ 1 h+ 1

=⇒
Left Rotate(y)

z −1

y +1

x 0

1 2

3

4

h− 1 h− 1

h+ 1

h+ 1

16(b).3.1: bal(pp) = −1, bal(q) = −1, Right rotation 256

upout(p)
Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.17

ypp +1

xp 0 zq +1

1 2

3

4

h− 1 h− 1

h

h+ 1

=⇒
Left Rotate(y)

z 0r

y 0

x 0

1 2 3 4

h− 1 h− 1 h h+ 1

plus upout(r).

17(b).3.2: bal(pp) = −1, bal(q) = +1, Right rotation+upout
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upout(p)
Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = −1.18

ypp +1

xp 0 zq −1

w

1 2

3 4

5
h− 1 h− 1

h

=⇒
Rotate right
(z) left (y)

w 0r

y 0

x

z

0

1 2 3 4 5

h− 1 h− 1 h

plus upout(r).
18(b).3.3: bal(pp) = −1, bal(q) = −1, left-right rotation + upout
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Conclusion

AVL trees have worst-case asymptotic runtimes of O(log n) for
searching, insertion and deletion of keys.
Insertion and deletion is relatively involved and an overkill for
really small problems.
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