
9. Hashing

Hash Tables, Pre-Hashing, Hashing, Resolving Collisions using
Chaining, Simple Uniform Hashing, Popular Hash Functions,
Table-Doubling, Open Addressing: Probing [Ottman/Widmayer, Kap.
4.1-4.3.2, 4.3.4, Cormen et al, Kap. 11-11.4]

166

Motivating Example

Gloal: Efficient management of a table of all n ETH-students of

Possible Requirement: fast access (insertion, removal, find) of a
dataset by name

167

Dictionary

Abstract Data Type (ADT) D to manage items4 i with keys k ∈ K
with operations

D.insert(i): Insert or replace i in the dictionary D.
D.delete(i): Delete i from the dictionary D. Not existing⇒ error
message.
D.search(k): Returns item with key k if it exists.

4Key-value pairs (k, v), in the following we consider mainly the keys
168

Dictionaries in Python
fruits = {

"banana": 2.95, "kiwi": 0.70,
"pear": 4.20, "apple": 3.95

}

fruits["melon"] = 3.95
fruits["banana"] = 1.90
print("banana", fruits["banana"])
print("melon in fruits", "melon" in
fruits)print("onion in fruits"
, "onion" in fruits)
del fruits["strawberry"]
for name,price in fruits.items():

print(name,"−>",price)

dictionary

insert
update

find

remove
iterate

169

Dictionaries in Java

Map<String,Double> fruits =
new HashMap<String,Double>();

fruits.put("banana", 2.95);
fruits.put("kiwi", 0.70);
fruits.put("strawberry", 9.95);
fruits.put("pear", 4.20);
fruits.put("apple", 3.95);
fruits.put("banana", 2.90);
Out.println("banana " + fruits.get("banana"));
fruits.remove("banana");
for (String s: fruits.keySet())

Out.println(s+" " + fruits.get(s));

dictionary

insert

update
find

remove
iterate

170

Motivation / Use
Perhaps the most popular data structure.

Supported in many programming languages (C++, Java, Python,
Ruby, Javascript, C# ...)
Obvious use

Databases, Spreadsheets
Symbol tables in compilers and interpreters

Less obvious

Substrin Search (Google, grep)
String commonalities (Document distance, DNA)
File Synchronisation
Cryptography: File-transfer and identification

171

1. Idea: Direct Access Table (Array)

Index Item
0 -
1 -
2 -
3 [3,value(3)]
4 -
5 -
...

...
k [k,value(k)]
...

...

Problems
1 Keys must be non-negative

integers
2 Large key-range⇒ large array

172

Solution to the first problem: Pre-hashing

Prehashing: Map keys to positive integers using a function
ph : K → N

Theoretically always possible because each key is stored as a
bit-sequence in the computer
Theoretically also: x = y ⇔ ph(x) = ph(y)

Practically: APIs offer functions for pre-hashing. (Java:
object.hashCode(), C++: std::hash<>, Python:
hash(object))
APIs map the key from the key set to an integer with a restricted
size.5

5Therefore the implication ph(x) = ph(y) ⇒ x = y does not hold any more for all x,y.
173

Prehashing Example : String

Mapping Name s = s1s2 . . . sls to key

ph(s) =

(
ls∑

i=1

sls−i+1 · bi
)

mod 2w

b so that different names map to different keys as far as possible.

b Word-size of the system (e.g. 32 or 64)

Example (Java) with b = 31, w = 32. Ascii-Values si.
Anna 7→ 2045632
Jacqueline 7→ 2042089953442505 mod 232 = 507919049

174

Implementation Prehashing (String) in Java

phb,m(s) =

(
l−1∑

i=0

sl−i+1 · bi
)

mod m

With b = 31 and m = 232 we get in Java6

int prehash(String s){
int h = 0;
for (int k = 0; k < s.length(); ++k){

h = h ∗ b + s.charAt(k);
}
return h;

}
6Try to understand why this works

175

Lösung zum zweiten Problem: Hashing
Reduce the universe. Map (hash-function) h : K → {0, ...,m− 1}
(m ≈ n = number entries of the table)

Collision: h(ki) = h(kj).
176

Nomenclature

Hash funtion h: Mapping from the set of keys K to the index set
{0, 1, . . . ,m− 1} of an array (hash table).

h : K → {0, 1, . . . ,m− 1}.

Normally |K| � m. There are k1, k2 ∈ K with h(k1) = h(k2)
(collision).

A hash function should map the set of keys as uniformly as possible
to the hash table.

177

Resolving Collisions: Chaining
Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys 12 , 55 , 5 , 15 , 2 , 19 , 43

Direct Chaining of the Colliding entries

15

43

2 12

5

19

55

hash table

Colliding entries

0 1 2 3 4 5 6

178

Algorithm for Hashing with Chaining

insert(i) Check if key k of item i is in list at position h(k). If no,
then append i to the end of the list. Otherwise replace element by
i.
find(k) Check if key k is in list at position h(k). If yes, return the
data associated to key k, otherwise return empty element null.
delete(k) Search the list at position h(k) for k. If successful,
remove the list element.

179

Worst-case Analysis

Worst-case: all keys are mapped to the same index.

⇒ Θ(n) per operation in the worst case.

180

Simple Uniform Hashing

Strong Assumptions: Each key will be mapped to one of the m
available slots

with equal probability (Uniformity)
and independent of where other keys are hashed
(Independence).

181

Simple Uniform Hashing
Under the assumption of simple uniform hashing:
Expected length of a chain when n elements are inserted into a
hash table with m elements

E(Länge Kette j) = E

(
n−1∑

i=0

1(ki = j)

)
=

n−1∑

i=0

P(ki = j)

=
n∑

i=1

1

m
=
n

m

α = n/m is called load factor of the hash table.
182

Simple Uniform Hashing

Theorem
Let a hash table with chaining be filled with load-factor α = n

m < 1.
Under the assumption of simple uniform hashing, the next operation
has expected costs of ≤ 1 + α.

Consequence: if the number slots m of the hash table is always at
least proportional to the number of elements n of the hash table,
n ∈ O(m)⇒ Expected Running time of Insertion, Search and
Deletion is O(1).

183

Advantages and Disadvantages of Chaining

Advantages

Possible to overcommit: α > 1 allowed
Easy to remove keys.

Disadvantages

Memory consumption of the chains-

184

An Example of a popular Hash Function

Division method
h(k) = k mod m

Ideal: m prime, not too close to powers of 2 or 10

But often: m = 2k − 1 (k ∈ N)

Other method: multiplication method (cf. Cormen et al, Kap. 11.3).

185

Table size increase

We do not know beforehand how large n will be
Require m = Θ(n) at all times.

Table size needs to be adapted. Hash-Function changes⇒
rehashing

Allocate array A′ with size m′ > m

Insert each entry of A into A′ (with re-hashing the keys)
Set A← A′.
Costs O(n+m+m′).

How to choose m′?
186

Table size increase

1.Idea n = m⇒ m′ ← m+ 1
Increase for each insertion: Costs Θ(1 + 2 + 3 + · · ·+ n) = Θ(n2)

2.Idea n = m⇒ m′ ← 2m Increase only ifm = 2i:
Θ(1 + 2 + 4 + 8 + · · ·+ n) = Θ(n)
Few insertions cost linear time but on average we have Θ(1)

Jede Operation vom Hashing mit Verketten hat erwartet amortisierte
Kosten Θ(1).

(⇒ Amortized Analysis)

187

Amortisierte Analyse
General procedure for dynamic arrays (e.g. Java: ArrayList,
Python: List)

The data structure provides, besides the data array, two numbers:
size of the array (capacity m) and the number of used entries (size
n)
Double the size and copy entries when the list is full
n = m ⇒ m← 2n. Kosten Θ(m).
Runtime costs for n = 2k insertion operations:
Θ(1 + 2 + 4 + 8 + · · ·+ 2k) = Θ(2k+1 − 1) = Θ(n).

Costs per operation averaged over all operations = amortized costs
= Θ(1) per insertion operation

188

Open Addressing7

Store the colliding entries directly in the hash table using a probing
function s : K × {0, 1, . . . ,m− 1} → {0, 1, . . . ,m− 1}
Key table position along a probing sequence

S(k) := (s(k, 0), s(k, 1), . . . , s(k,m− 1)) mod m

Probing sequence must for each k ∈ K be a permutation of
{0, 1, . . . ,m− 1}

7Notational clarification: this method uses open addressing(meaning that the positions in the hashtable are not fixed) but
it is a closed hashing procedure (because the entries stay in the hashtable)

189

Algorithms for open addressing

insert(i) Search for kes k of i in the table according to S(k). If k
is not present, insert k at the first free position in the probing
sequence. Otherwise error message.
find(k) Traverse table entries according to S(k). If k is found,
return data associated to k. Otherwise return an empty element
null.
delete(k) Search k in the table according to S(k). If k is found,
replace it with a special key removed.

190

Linear Probing

s(k, j) = h(k) + j ⇒ S(k) = (h(k), h(k) + 1, . . . , h(k) +m− 1)
mod m

Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Key 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2 19

191

Discussion

Example α = 0.95

The unsuccessful search consideres 200 table entries on average!
(here without derivation).

? Disadvantage of the method?

! Primary clustering: similar hash addresses have similar probing
sequences⇒ long contiguous areas of used entries.

192

Quadratic Probing

s(k, j) = h(k) + dj/2e2 (−1)j+1

S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . .) mod m

Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 55515 219

193

Discussion

Example α = 0.95

Unsuccessfuly search considers 22 entries on average (here without
derivation)

? Problems of this method?
! Secondary clustering: Synonyms k and k′ (with h(k) = h(k′))

travers the same probing sequence.

194

Double Hashing

Two hash functions h(k) and h′(k). s(k, j) = h(k) + j · h′(k).
S(k) = (h(k), h(k) + h′(k), h(k) + 2h′(k), . . . , h(k) + (m− 1)h′(k)) mod m

Example:
m = 7, K = {0, . . . , 500}, h(k) = k mod 7, h′(k) = 1 + k mod 5.
Keys 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2 19

195

Double Hashing

Probing sequence must permute all hash addresses. Thus
h′(k) 6= 0 and h′(k) may not divide m, for example guaranteed
with m prime.
h′ should be as independent of h as possible (to avoid secondary
clustering)

Independence largely fulfilled by h(k) = k mod m and
h′(k) = 1 + k mod (m− 2) (m prime).

196

Uniform Hashing

Strong assumption: the probing sequence S(k) of a key l is equaly
likely to be any of the m! permutations of {0, 1, . . . ,m− 1}
(Double hashing is reasonably close)

197

Analysis of Uniform Hashing with Open Addressing

Theorem
Let an open-addressing hash table be filled with load-factor
α = n

m < 1. Under the assumption of uniform hashing, the next
operation has expected costs of ≤ 1

1−α .

Without Proof, cf. e.g. Cormen et al, Kap. 11.4

198

