166

Motivating Example

9. Hashing

Hash Tables, Pre-Hashing, Hashing, Resolving Collisions using Chaining, Simple Uniform Hashing, Popular Hash Functions, Table-Doubling, Open Addressing: Probing [Ottman/Widmayer, Kap. 4.1-4.3.2, 4.3.4, Cormen et al, Kap. 11-11.4] *Gloal:* Efficient management of a table of all n ETH-students of *Possible Requirement:* fast access (insertion, removal, find) of a dataset by name

Dictionary

Abstract Data Type (ADT) D to manage items⁴ i with keys $k \in \mathcal{K}$ with operations

- **D**.insert(*i*): Insert or replace *i* in the dictionary *D*.
- D.delete(i): Delete *i* from the dictionary *D*. Not existing \Rightarrow error message.
- **D**.search(k): Returns item with key k if it exists.

⁴Key-value pairs (k, v), in the following we consider mainly the keys

Dictionaries in Python

```
dictionary → fruits = {
    "banana": 2.95, "kiwi": 0.70,
    "pear": 4.20, "apple": 3.95
}
```

169

Dictionaries in Java

Motivation / Use

Perhaps the most popular data structure.

- Supported in many programming languages (C++, Java, Python, Ruby, Javascript, C# ...)
- Obvious use
 - Databases, Spreadsheets
 - Symbol tables in compilers and interpreters
- Less obvious
 - Substrin Search (Google, grep)
 - String commonalities (Document distance, DNA)
 - File Synchronisation
 - Cryptography: File-transfer and identification

1. Idea: Direct Access Table (Array) Solution to the first problem: Pre-hashing Prehashing: Map keys to positive integers using a function Index Item $ph: \mathcal{K} \to \mathbb{N}$ 0 -1 Theoretically always possible because each key is stored as a -2 3 4 5 : Problems bit-sequence in the computer [3.value(3)] Keys must be non-negative Theoretically also: $x = y \Leftrightarrow ph(x) = ph(y)$ integers Practically: APIs offer functions for pre-hashing. (Java: -**2** Large key-range \Rightarrow large array object.hashCode(), C++: std::hash<>, Python: k hash(object)) [k,value(k)] APIs map the key from the key set to an integer with a restricted size.⁵

170

⁵Therefore the implication $ph(x) = ph(y) \Rightarrow x = y$ does **not** hold any more for all x,y.

Prehashing Example : String

Mapping Name $s = s_1 s_2 \dots s_{l_s}$ to key

$$ph(s) = \left(\sum_{i=1}^{l_s} s_{l_s-i+1} \cdot b^i\right) \mod 2^w$$

b so that different names map to different keys as far as possible.

b Word-size of the system (e.g. 32 or 64)

Example (Java) with b = 31, w = 32. Ascii-Values s_i . Anna $\mapsto 2045632$ Jacqueline $\mapsto 2042089953442505 \mod 2^{32} = 507919049$

Implementation Prehashing (String) in Java

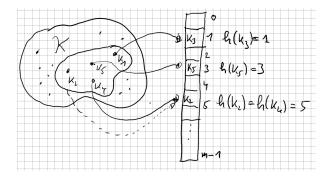
$$ph_{b,m}(s) = \left(\sum_{i=0}^{l-1} s_{l-i+1} \cdot b^i\right) \mod m$$

With b = 31 and m = 2³² we get in Java⁶
int prehash(String s){
 int h = 0;
 for (int k = 0; k < s.length(); ++k){
 h = h * b + s.charAt(k);
 }
 return h;
}</pre>

⁶Try to understand why this works

Lösung zum zweiten Problem: Hashing

Reduce the universe. Map (hash-function) $h : \mathcal{K} \to \{0, ..., m-1\}$ ($m \approx n$ = number entries of the table)



Collision: $h(k_i) = h(k_j)$.

Nomenclature

Hash funtion h: Mapping from the set of keys \mathcal{K} to the index set $\{0, 1, \ldots, m-1\}$ of an array (*hash table*).

 $h: \mathcal{K} \to \{0, 1, \dots, m-1\}.$

Normally $|\mathcal{K}| \gg m$. There are $k_1, k_2 \in \mathcal{K}$ with $h(k_1) = h(k_2)$ (*collision*).

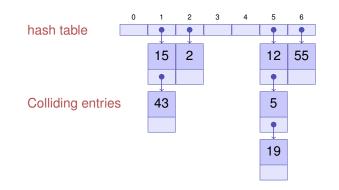
A hash function should map the set of keys as uniformly as possible to the hash table.

174

Resolving Collisions: Chaining

Example m = 7, $\mathcal{K} = \{0, \dots, 500\}$, $h(k) = k \mod m$. Keys 12, 55, 5, 15, 2, 19, 43

Direct Chaining of the Colliding entries



Algorithm for Hashing with Chaining

- Insert(i) Check if key k of item i is in list at position h(k). If no, then append i to the end of the list. Otherwise replace element by i.
- **find**(k) Check if key k is in list at position h(k). If yes, return the data associated to key k, otherwise return empty element **null**.

179

181

delete(k) Search the list at position h(k) for k. If successful, remove the list element.

hing
S

178

Worst-case: all keys are mapped to the same index.

 $\Rightarrow \Theta(n)$ per operation in the worst case.

Strong Assumptions: Each key will be mapped to one of the m available slots

- with equal probability (Uniformity)
- and independent of where other keys are hashed (Independence).

Simple Uniform Hashing

Under the assumption of simple uniform hashing: *Expected length* of a chain when n elements are inserted into a hash table with m elements

$$\mathbb{E}(\text{Länge Kette j}) = \mathbb{E}\left(\sum_{i=0}^{n-1} \mathbb{1}(k_i = j)\right) = \sum_{i=0}^{n-1} \mathbb{P}(k_i = j)$$
$$= \sum_{i=1}^{n} \frac{1}{m} = \frac{n}{m}$$

 $\alpha = n/m$ is called *load factor* of the hash table.

Simple Uniform Hashing

Theorem

Let a hash table with chaining be filled with load-factor $\alpha = \frac{n}{m} < 1$. Under the assumption of simple uniform hashing, the next operation has expected costs of $\leq 1 + \alpha$.

Consequence: if the number slots m of the hash table is always at least proportional to the number of elements n of the hash table, $n \in \mathcal{O}(m) \Rightarrow$ Expected Running time of Insertion, Search and Deletion is $\mathcal{O}(1)$.

183

185

Advantages and Disadvantages of Chaining

Advantages

- Possible to overcommit: $\alpha > 1$ allowed
- Easy to remove keys.

Disadvantages

Memory consumption of the chains-

An Example of a popular Hash Function

Division method

 $h(k) = k \bmod m$

Ideal: m prime, not too close to powers of 2 or 10 But often: $m = 2^k - 1$ ($k \in \mathbb{N}$) Other method: multiplication method (cf. Cormen et al, Kap. 11.3).

Table size increase

- \blacksquare We do not know beforehand how large n will be
- **Require** $m = \Theta(n)$ at all times.

Table size needs to be adapted. Hash-Function changes \Rightarrow *rehashing*

- Allocate array A' with size m' > m
- Insert each entry of A into A' (with re-hashing the keys)
- **Set** $A \leftarrow A'$.
- Costs $\mathcal{O}(n+m+m')$.

How to choose m'?

Table size increase

- 1.Idea $n = m \Rightarrow m' \leftarrow m + 1$ Increase for each insertion: Costs $\Theta(1 + 2 + 3 + \dots + n) = \Theta(n^2)$
- 2.Idea $n = m \Rightarrow m' \leftarrow 2m$ Increase only if $m = 2^i$: $\Theta(1 + 2 + 4 + 8 + \dots + n) = \Theta(n)$ Few insertions cost linear time but on average we have $\Theta(1)$ \bigcirc

Jede Operation vom Hashing mit Verketten hat erwartet amortisierte Kosten $\Theta(1).$

 $(\Rightarrow \text{Amortized Analysis})$

Amortisierte Analyse

General procedure for dynamic arrays (e.g. Java: ArrayList, Python: List)

- The data structure provides, besides the data array, two numbers: size of the array (capacity m) and the number of used entries (size n)
- Double the size and copy entries when the list is full $n = m \Rightarrow m \leftarrow 2n$. Kosten $\Theta(m)$.
- Runtime costs for $n = 2^k$ insertion operations: $\Theta(1+2+4+8+\cdots+2^k) = \Theta(2^{k+1}-1) = \Theta(n).$

Costs per operation averaged over all operations = amortized costs

= $\Theta(1)$ per insertion operation

Open Addressing⁷

Store the colliding entries directly in the hash table using a *probing* function $s : \mathcal{K} \times \{0, 1, \dots, m-1\} \rightarrow \{0, 1, \dots, m-1\}$

Key table position along a *probing sequence*

$$S(k) := (s(k,0), s(k,1), \dots, s(k,m-1)) \mod m$$

Probing sequence must for each $k \in \mathcal{K}$ be a permutation of $\{0, 1, \ldots, m-1\}$

⁷Notational clarification: this method uses *open addressing*(meaning that the positions in the hashtable are not fixed) but it is a *closed hashing* procedure (because the entries stay in the hashtable)

Algorithms for open addressing

- insert(i) Search for kes k of i in the table according to S(k). If k is not present, insert k at the first free position in the probing sequence. Otherwise error message.
- find(k) Traverse table entries according to S(k). If k is found, return data associated to k. Otherwise return an empty element null.
- **delete**(k) Search k in the table according to S(k). If k is found, replace it with a special key removed.

Linear Probing

 $s(k, j) = h(k) + j \Rightarrow S(k) = (h(k), h(k) + 1, \dots, h(k) + m - 1)$ mod m

Example m = 7, $\mathcal{K} = \{0, \dots, 500\}$, $h(k) = k \mod m$. Key 12, 55, 5, 15, 2, 19

0	1	2	3	4	5	6
•5	<mark>.</mark> 15	2	19		12	55

Discussion

Example $\alpha = 0.95$

The unsuccessful search consideres 200 table entries on average! (here without derivation).

Oisadvantage of the method?

① *Primary clustering:* similar hash addresses have similar probing sequences \Rightarrow long contiguous areas of used entries.

Quadratic Probing

 $s(k,j) = h(k) + \lceil j/2 \rceil^2 (-1)^{j+1}$ $S(k) = (h(k), h(k) + 1, h(k) - 1, h(k) + 4, h(k) - 4, \dots) \mod m$

Example m = 7, $\mathcal{K} = \{0, \dots, 500\}$, $h(k) = k \mod m$. Keys 12, 55, 5, 15, 2, 19

0	1	2	3	4	5	6
19	<mark>.</mark> 15	2		•5	12	55

Discussion

Example $\alpha = 0.95$

Unsuccessfuly search considers 22 entries on average (here without derivation)

Problems of this method?

U Secondary clustering: Synonyms k and k' (with h(k) = h(k')) travers the same probing sequence.

Double Hashing

Two hash functions h(k) and h'(k). $s(k, j) = h(k) + j \cdot h'(k)$. $S(k) = (h(k), h(k) + h'(k), h(k) + 2h'(k), \dots, h(k) + (m-1)h'(k)) \mod m$

Example:

 $m = 7, \mathcal{K} = \{0, \dots, 500\}, h(k) = k \mod 7, h'(k) = 1 + k \mod 5.$ Keys 12, 55, 5, 15, 2, 19

0	1	2	3	4	5	6
5	15	2	19		.12	. 55

Double Hashing

- Probing sequence must permute all hash addresses. Thus h'(k) ≠ 0 and h'(k) may not divide m, for example guaranteed with m prime.
- h' should be as independent of h as possible (to avoid secondary clustering)

Independence largely fulfilled by $h(k) = k \mod m$ and $h'(k) = 1 + k \mod (m - 2)$ (m prime).

Uniform Hashing

Strong assumption: the probing sequence S(k) of a key l is equaly likely to be any of the m! permutations of $\{0, 1, \ldots, m-1\}$

(Double hashing is reasonably close)

Theorem

Let an open-addressing hash table be filled with load-factor $\alpha = \frac{n}{m} < 1$. Under the assumption of uniform hashing, the next operation has expected costs of $\leq \frac{1}{1-\alpha}$.

198

Without Proof, cf. e.g. Cormen et al, Kap. 11.4