9. Hashing

Hash Tables, Pre-Hashing, Hashing, Resolving Collisions using
Chaining, Simple Uniform Hashing, Popular Hash Functions,
Table-Doubling, Open Addressing: Probing [Ottman/Widmayer, Kap.
4.1-4.3.2, 4.3.4, Cormen et al, Kap. 11-11.4]

166

Dictionary

Abstract Data Type (ADT) D to manage items* i with keys k € K
with operations
m D.insert(7): Insert or replace i in the dictionary D.

m D.delete(i): Delete i from the dictionary D. Not existing = error
message.

m D.search(k): Returns item with key £ if it exists.

“Key-value pairs (k,v), in the following we consider mainly the keys
168

Motivating Example

Gloal: Efficient management of a table of all n ETH-students of

Possible Requirement: fast access (insertion, removal, find) of a
dataset by name

Dictionaries in Python

dictionary — fruits = {
"banana": 2.95, "kiwi": 0.70,
"pear": 4.20, "apple": 3.95
}

insert = fruits["melon"] = 3.95
update — fruits["banana"] = 1.90
find = print("banana", fruits["banana"])
print("melon in fruits", "melon" in
fruits)print("onion in fruits"
, "onion" in fruits)
remove — del fruits["strawberry"]
iterate —> for name,price in fruits.items(Q):
print (name,"—>",price)

167

169

Dictionaries in Java

dictionary — Map<String,Double> fruits =
new HashMap<String,Double>();

insert — fruits.put("banana", 2.95);
fruits.put("kiwi", 0.70);
fruits.put("strawberry", 9.95);
fruits.put("pear", 4.20);
fruits.put("apple", 3.95);

update — fruits.put("banana", 2.90);

find —> Out.println("banana " + fruits.get("banana"));
remove ——> fruits.remove("banana");
iterate — for (String s: fruits.keySet())
Out.println(s+" " + fruits.get(s));

1. Idea: Direct Access Table (Array)

Index Item

0 -

3

2 - Problems

3 [3,value(3)] Keys must be non-negative

g - integers

: : Large key-range = large array
k [k,value(k)]

Motivation / Use

Perhaps the most popular data structure.

m Supported in many programming languages (C++, Java, Python,
Ruby, Javascript, C# ...)
m Obvious use

m Databases, Spreadsheets
m Symbol tables in compilers and interpreters

m Less obvious

Substrin Search (Google, grep)

String commonalities (Document distance, DNA)
File Synchronisation

Cryptography: File-transfer and identification

Solution to the first problem: Pre-hashing

Prehashing: Map keys to positive integers using a function

ph: K — N

m Theoretically always possible because each key is stored as a
bit-sequence in the computer

m Theoretically also: = = y < ph(x) = ph(y)

m Practically: APIs offer functions for pre-hashing. (Java:
object.hashCode(), C++: std: :hash<>, Python:
hash(object))

m APIs map the key from the key set to an integer with a restricted
size.

5Therefore the implication ph(z) = ph(y) = = = y does not hold any more for all z,y.

173

Prehashing Example : String Implementation Prehashing (String) in Java

Mapping Name s = s1s5... 51, to key

-1
l _ i
s ' phym(s) = E Si—it1 - b | mod m
ph(s) = (E Sl,—i+1 - b2> mod 2% (io

With b = 31 and m = 232 we get in Java®

b so that different names map to different keys as far as possible. int prehash(String s){

: int h = 0;
b Word-size of the system (e.g. 32 or 64) ;zr (int k = 0; k < s.length(); ++k){
Example (Java) with b = 31, w = 32. Ascii-Values s;. h =h % b + s.charAt(k);
Anna — 2045632 Y n
Jacqueline — 2042089953442505 mod 232 = 507919049 }

- 8Try to understand why this works

Losung zum zweiten Problem: Hashing Nomenclature

Reduce the universe. Map (hash-function) h : £ — {0,...,m — 1}
(m ~ n = number entries of the table) Hash funtion h: Mapping from the set of keys K to the index set
{0,1,...,m — 1} of an array (hash table).

h:K—{0,1,...,m—1}.
Normally |KC| > m. There are ky, ks € K with h(k1) = h(ks)
(collision).

A hash function should map the set of keys as uniformly as possible
to the hash table.

Collision: h(k;) = h(k;).

Resolving Collisions: Chaining

Example m =7, K = {0,...,500}, h(k) = k mod m.
Keys 12,55 ,5,15,2,19 ,43
Direct Chaining of the Colliding entries

0 1 2 3 4 5 6

hash table o1 o] H o[o]
1 1 1 1
15| 2 12 | 55
? ®
i) T
Colliding entries 43 5
b4
1
19

Worst-case Analysis

Worst-case: all keys are mapped to the same index.
= O(n) per operation in the worst case. &

180

Algorithm for Hashing with Chaining

m insert(i) Check if key k of item i is in list at position i(k). If no,
then append i to the end of the list. Otherwise replace element by
0.

m find(k) Check if key k is in list at position h(k). If yes, return the
data associated to key k, otherwise return empty element null.

m delete(k) Search the list at position i (k) for k. If successful,
remove the list element.

Simple Uniform Hashing

Strong Assumptions: Each key will be mapped to one of the m
available slots

m with equal probability (Uniformity)

m and independent of where other keys are hashed
(Independence).

181

Simple Uniform Hashing

Under the assumption of simple uniform hashing:
Expected length of a chain when n elements are inserted into a
hash table with m elements

a = n/mis called load factor of the hash table.

182

Advantages and Disadvantages of Chaining

Advantages

m Possible to overcommit: « > 1 allowed
m Easy to remove keys.

Disadvantages

m Memory consumption of the chains-

184

Simple Uniform Hashing

Let a hash table with chaining be filled with load-factor o = - < 1.
Under the assumption of simple uniform hashing, the next operation
has expected costs of < 1 + a.

Consequence: if the number slots m of the hash table is always at
least proportional to the number of elements n of the hash table,
n € O(m) = Expected Running time of Insertion, Search and
Deletion is O(1).

183

An Example of a popular Hash Function

Division method
h(k) = k mod m

Ideal: m prime, not too close to powers of 2 or 10
But often: m = 2¥ — 1 (k € N)
Other method: multiplication method (cf. Cormen et al, Kap. 11.3).

Table size increase

m We do not know beforehand how large n will be
m Require m = ©(n) at all times.

Table size needs to be adapted. Hash-Function changes =-
rehashing

m Allocate array A’ with size m’ > m

m Insert each entry of A into A’ (with re-hashing the keys)
m Set A<+ A.

m Costs O(n +m+m’).

How to choose m'?

186

Amortisierte Analyse

General procedure for dynamic arrays (e.g. Java: ArrayList,
Python: List)

m The data structure provides, besides the data array, two numbers:
size of the array (capacity m) and the number of used entries (size
n)

m Double the size and copy entries when the list is full
n=m = m < 2n. Kosten ©(m).

m Runtime costs for n = 2* insertion operations:
O(1+2+4+8+---+2F) =02 - 1) = O(n).

Costs per operation averaged over all operations = amortized costs
= O(1) per insertion operation

188

Table size increase

mlldean=m=m' < m+1
Increase for each insertion: Costs O(1 +2+ 3+ --- +n) = O(n?)

®

m 2.ldean = m = m' < 2m Increase only ifm = 2':
O(1+2+44+8+---+n)=0(n)
Few insertions cost linear time but on average we have (1) ©

Jede Operation vom Hashing mit Verketten hat erwartet amortisierte
Kosten ©(1).

(= Amortized Analysis)

Open Addressing’

Store the colliding entries directly in the hash table using a probing
function s : K x {0,1,...,m—1} - {0,1,...,m — 1}

Key table position along a probing sequence

S(k) := (s(k,0),s(k,1),...,s(k,m—1))

mod m

Probing sequence must for each k& € K be a permutation of
{0,1,...,m—1}

"Notational clarification: this method uses open addressing(meaning that the positions in the hashtable are not fixed) but
it is a closed hashing procedure (because the entries stay in the hashtable)
189

Algorithms for open addressing

m insert(i) Search for kes k of i in the table according to S(k). If k
is not present, insert k at the first free position in the probing
sequence. Otherwise error message.

m find(k) Traverse table entries according to S(k). If k is found,
return data associated to k. Otherwise return an empty element
null.

m delete(k) Search k in the table according to S(k). If k is found,
replace it with a special key removed.

190

Discussion

Example a = 0.95

The unsuccessful search consideres 200 table entries on average!
(here without derivation).

@ Disadvantage of the method?

® Primary clustering: similar hash addresses have similar probing
sequences = long contiguous areas of used entries.

192

Linear Probing

s(k,§) = h(k) +j = S(k) = (h(k), h(k) + 1, ..

mod m

S h(k)+m—1)

Example m =7, K = {0,...,500}, h(k) = k mod m.
Key 12,55 ,5,15,2,19

1 2 3 4 5 6
S |15 2 119 12| 55

191

Quadratic Probing

s(k, j) = h(k) +

/2] (—1)7+!
S(k) = (h(k), h(k)

(
+1,h(k) — 1, h(k) +4,h(k) —4,...) modm

Example m =7, K = {0,...,500}, h(k) = k mod m.
Keys 12,55 ,5,15,2,19

1 2 3 4 5 6
19115 2 5 1255

193

Discussion

Example a = 0.95
Unsuccessfuly search considers 22 entries on average (here without
derivation)

@ Problems of this method?

O Secondary clustering: Synonyms k and &’ (with h(k) = h(K"))
travers the same probing sequence.

194

Double Hashing

m Probing sequence must permute all hash addresses. Thus
h'(k) # 0 and h/(k) may not divide m, for example guaranteed
with m prime.

m /' should be as independent of / as possible (to avoid secondary
clustering)

Independence largely fulfilled by (k) = k£ mod m and
h'(k) =1+ k mod (m — 2) (m prime).

196

Double Hashing

Two hash functions h(k) and h/(k). s(k,j) = h(k) + 5 - b/ (k).
S(k) = (h(k), h(k) + W (k), h(k) + 2k (k),..., h(k) + (m — 1)h/(k)) mod m

Example:
m="1,K={0,...,500}, h(k) = kmod 7, h'(k) = 1 + k mod 5.
Keys 12,55 ,5,15,2,19

i1 2 3 4 5 6
5 |15 2 | 19 12155

195

Uniform Hashing

Strong assumption: the probing sequence S(k) of a key [is equaly
likely to be any of the m! permutations of {0,1,...,m — 1}

(Double hashing is reasonably close)

Analysis of Uniform Hashing with Open Addressing

Let an open-addressing hash table be filled with load-factor
a = -+ < 1. Under the assumption of uniform hashing, the next
operation has expected costs of < L.

Without Proof, cf. e.g. Cormen et al, Kap. 11.4

198

