
5. From Java to Python

First Python Program, Transfer Java→ Python, Dynamic Data
Structures in Python

94

Learning Objectives

see a new programming language (Python) and learn how to
transfer from one programming language to another
learn the most important differences between Java and Python,
both from a syntactical and semantical point of view
learn about the basic data types of Python (list, set, dict, tuple)
and operations leveraging the use of such data types
get used to the new programming language and environment
(Python) by re-implementing known algorithms

95

First Java Program

public class Hello {
public static void main (String[] args) {

System.out.print("Hello World!");
}

}

96

First Python Program

print("Hello World!")

97

Comments

Comments are preceded by a #

prints ’Hello World!’ to the console
print("Hello World!")

98

Formatting Matters: Statements

Whitespace is relevant
Each line represents a statement
So, exactly one Statement per line
Comments start with #

Example program with two statements:
two print−statements
print("Hurray, finally ...")
print("... no Semicolons!")

99

Formatting Matters: Blocks

Blocks must be indented.
All indented statements are part of a block. The block ends as
soon as the indentation ends.
Start of a Block is marked by a colon “:”

in Python
while i > 0:

x = x + 1 / i
i = i − 1

print(x)

// in Java
while (i > 0) {

x = x + 1.0 / i;
i = i − 1;

}
System.out.print(x)

100

Literals: Numbers

integer: 42, −5, 0x1b, 0o33, 7729684762313578932578932
Arbitrary precise integer numbers
float: −0.1, 34.567e−4
Like double in Java, but precision depends on platform (CPU/
operating system)
complex: 2 + 3j, (0.21 - 1.2j)
Complex numbers in the form a+bj. Optional round parentheses.

101

Literals: Booleans

True
False

102

Literals: Strings

’a single quoted string\nand a second line’
"a doube quoted string\nand a second line"
Multi-line strings (tripple double quotes):

"""a multiline string
and a second line"""

103

Literals: Sequences

arrays: There are no primitive arrays in Python
lists: [17, True, "abc"] , []
Mutable ordered sequence of 0 or more Values of arbitrary types.
tuples: (17, True, "abc") , (42,)
Immutable ordered sequence of 1 or more Values of arbitrary
types.

104

Literals: Collections

dicts: { "a": 42, "b": 27, False: 0 } , {}
Mutable Key-Value store. Keys and values may have arbitrary
types.
sets: {17, True, "abc"} , {42}
Mutable unordered sequence of 0 or more Values of arbitrary
types. No duplicates.

105

Variables

Variables are automatically created upon the first assignment
The type of a variable is not checked upon assignment. That is,
values of different types can be assigned to a variable over time.
Assignment of values with the assignment operator: =
Assignment to multiple variables with tuples

a = "Ein Text"
print(a) # prints: Ein Text
a = 42
print(a) # prints: 42

x, y = 4, 5
print(x) # prints: 4
print(y) # prints: 5

106

Variables

Variables must always be assigned first before it’s possible to read
their value

Assume b never got a value assigned:
a = b

Results in the following error

NameError: name ’b’ is not defined

107

Numeric and Boolean Operators

Numeric operators as in Java: +, −, ∗, /, %, ∗∗, //
Caution: “ / ” always results in a floating-point number
∗∗: Power function, a∗∗b = ab.
//: Integer division, 5//2 results in 2.5.
Comparison operators as in Java: ==, >=, <=, >, <, !=
Logical Operators: and, or, not
Membership Operator: “ in ” Determines if a value is in a list, set
or string.
Identity Operator: “ is ” Checks if two variables point to the same
object.

108

Input/Output

Reading of inputs using input()
A prompt can be provided.
Output using print(...)
print accepts one or more arguments and prints them separated
with a space

name = input("What is your name: ")
print("Hello", name)

109

Input/Output

Input is always read as string
To read a number, the input must be converted to a number first
No implicit conversion happens
Explicit conversion using:
int(), float(), complex(), list(), ...

i = int(input("Enter a number: "))
print("The", i,"th power of two is", 2∗∗i)

110

Conditions

No parentheses required around the test
elif to test another case
Mind the indentation!

a = int(input("Enter a number: "))
if a == 42:

print("Naturally, the answer")
elif a == 28:

print("A perfect number, good choice")
else:

print(a, "is just some boring number")

111

While-Loops

The well-known Collaz-Folge
a = int(input("Enter a number: "))
while a != 1:

if a % 2 == 0:
a = a // 2

else:
a = a ∗ 3 + 1

print(a, end=’ ’)

112

For-Loops

For-Loops work differently than in Java
Iterates over the elements of the given set

some_list = [14, ’lala’, 22, True, 6]
total = 0;
for item in some_list:

if type(item) == int:
total += item

print("Total of the numbers is", total)

113

For-Loops over a value range

The function range(start, end, step) creates a list of values,
starting with start until end - exclusive. Stepsize is step.
Step size is 1 if the third argument is omitted.

the following loop prints "1 2 3 4"
for i in range(1,5):

print(i, end=’ ’)

the following loop prints "10 8 6 4 2"
for i in range(10, 0, −2):

print(i, end=’ ’)

114

Methods
The Cookie Calculator revisited

def readInt(prompt, atleast = 1):
"""Prompt for a number greater 0 (or min, if specified)"""
number = 0;
while number < atleast:

number = int(input(prompt))
if (number < atleast):

print("Too small, pick a number larger than", atleast)
return number

kids = readInt("Kids: ")
cookies = readInt("Cookies: ", atleast=kids)
print("Each Kid gets", cookies // kids, "cookies.")
print("Papa gets", cookies % kids, "cookies.")

115

Lists: Basic Operations
Element-Access (0-based): a[2] points to the third element.
Negative indices count from the last element!

a = [3, 7, 4]
print(a[−1]) # prints ’4’

Add value to the tail: a.append(12)
Test if an element is in a collection:

if 12 in a:
print(’12 is in the list, we just added it before’)

Anzahl Elemente in einer Collection: len(a)
116

Lists: Slicing

Slicing: address partition: a[start:end]
a and/or b are positive or negative indices.
end is not inclusive

a = [1, 2, 3, 4, 5, 6, 7, 8, 9]
print(a[2:4]) # [3, 4]
print(a[3:−3]) # [4, 5, 6]
print(a[−3:−1]) # [7, 8]
print(a[5:]) # [6, 7, 8, 9]
print(a[:3]) # [1, 2, 3]

117

Dictionaries

Dictionaries are very important primitive data structures in Python

Easy and efficient possibility to name and group several fields of
data
Build hierarchical data structures by nesting
Accessing elements using [] Operator

record = { ’Firstname’: ’Hermann’, ’Lastname’:’Lehner’,
’Salary’: 420000, ’Mac User’: True }

record[’Salary’] = 450000
if record[’Mac User’]:

print(’... one more thing!’)

118

Dynamic Data Structures with Dicts
tree = {

’key’: 8,
’left’ : {

’key’: 4, ’left’ : None, ’right’: None
},
’right’: {

’key’: 13,
’left’ : {

’key’: 10, ’left’ : None, ’right’: None
},
’right’: {

’key’: 19, ’left’ : None, ’right’: None
}

}
}

8

4 13

10 19

119

Dynamic Data Structures with Dicts

Working with Dicts (Examples)

l = tree[’left’] # assign left subtree to variable l
l[’key’] = 6 # changes key from 4 to 6

if l[’left’] is None: # proper way to test against None
print("There is no left child here...")

else:
print("Value of left subtree is", l[’left’][’key’]

120

Dynamic Data Structures with Classes
class Node:

def __init__(self, k, l=None, r=None):
self.key, self.left, self.right = k, l, r

create the tree depicted on the right
rightSubtree = Node(13, l=Node(10), r=Node(19))
tree = Node(8, l=Node(4), r=rightSubtree)

an example query
print(tree.right.right.key) # prints: 19

8

4 13

10 19

121

Modules

Python has a vast amount of libraries in form of modules that can be
imported.

Importaing a whole module:

import math
x = math.sqrt(4)

from math import ∗
x = sqrt(4)

Importaing parts of a module:

from datetime import date
t = date.today()

122

	From Java to Python

