3. Suchen

Lineare Suche, Binäre Suche [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5]

Das Suchproblem

Gegeben

Menge von Datensätzen.

Beispiele

Telefonverzeichnis, Wörterbuch, Symboltabelle

- Jeder Datensatz hat einen Schlüssel k.
- Schlüssel sind vergleichbar: eindeutige Antwort auf Frage $k_1 \le k_2$ für Schlüssel k_1 , k_2 .

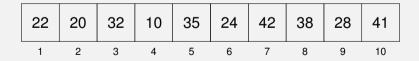
Aufgabe: finde Datensatz nach Schlüssel k.

Suche in Array

Gegeben

- **Array** A mit n Elementen $(A[1], \ldots, A[n])$.
- Schlüssel b

Gesucht: Index k, $1 \le k \le n$ mit A[k] = b oder "nicht gefunden".



Durchlaufen des Arrays von A[1] bis A[n].

■ *Bestenfalls* 1 Vergleich.

- *Bestenfalls* 1 Vergleich.
- Schlimmstenfalls n Vergleiche.

- Bestenfalls 1 Vergleich.
- Schlimmstenfalls n Vergleiche.
- Annahme: Jede Anordnung der n Schlüssel ist gleichwahrscheinlich. Erwartete Anzahl Vergleiche für die erfolgreiche Suche:

- Bestenfalls 1 Vergleich.
- Schlimmstenfalls n Vergleiche.
- Annahme: Jede Anordnung der n Schlüssel ist gleichwahrscheinlich. Erwartete Anzahl Vergleiche für die erfolgreiche Suche:

Durchlaufen des Arrays von A[1] bis A[n].

- Bestenfalls 1 Vergleich.
- Schlimmstenfalls n Vergleiche.
- Annahme: Jede Anordnung der n Schlüssel ist gleichwahrscheinlich. Erwartete Anzahl Vergleiche für die erfolgreiche Suche:

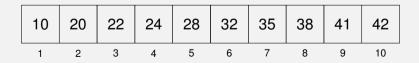
$$\frac{1}{n}\sum_{i=1}^{n} i = \frac{n+1}{2}.$$

Suche im sortierten Array

Gegeben

- Sortiertes Array A mit n Elementen $(A[1], \ldots, A[n])$ mit $A[1] \leq A[2] \leq \cdots \leq A[n]$.
- Schlüssel b

Gesucht: Index k, $1 \le k \le n$ mit A[k] = b oder "nicht gefunden".

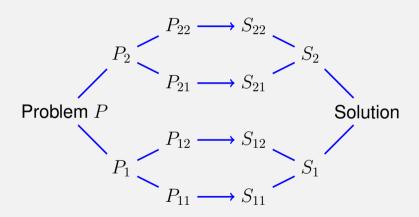


divide et impera

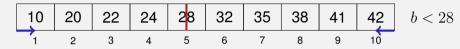
Teile und (be)herrsche (engl. divide and conquer)

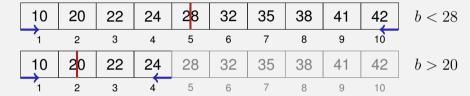
Zerlege das Problem in Teilprobleme, deren Lösung zur vereinfachten Lösung des Gesamtproblems beitragen.

divide et impera



10	20	22	24	28	32	35	38	41	42
					6				





10	20	22	24	28	32	35	38	41	42	b < 28
1	2	3	4	5	6	7	8	9	10	
10	20	22	24	28	32	35	38	41	42	b > 20
1	2	3	4	5	6	7	8	9	10	
10	20	22	24	28	32	35	38	41	42	b > 22
1	2	3	4	5	6	7	8	9	10	

10	20	22	24	28	32	35	38	41	42	b < 28
1	2	3	4	5	6	7	8	9	10	
10	20	22	24	28	32	35	38	41	42	b > 20
1	2	3	4	5	6	7	8	9	10	
10	20	22	24	28	32	35	38	41	42	b > 22
1	2	3	4	5	6	7	8	9	10	
10	20	22	24	28	32	35	38	41	42	b < 24
1	2	3	4	5	6	7	8	9	10	

b < 28	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
b > 20	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
b > 22	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
b < 24	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
erfolglos	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1

Binärer Suchalgorithmus BSearch(A[l..r], b)

```
Input: Sortiertes Array A von n Schlüsseln. Schlüssel b. Bereichsgrenzen
       1 < l < r < n oder l > r beliebig.
Output: Index des gefundenen Elements. 0, wenn erfolglos.
m \leftarrow \lfloor (l+r)/2 \rfloor
if l > r then // erfolglose Suche
    return NotFound
else if b = A[m] then// gefunden
    return m
else if b < A[m] then// Element liegt links
    return BSearch(A[l..m-1], b)
else //b > A[m]: Element liegt rechts
    return BSearch(A[m+1..r], b)
```

Rekurrenz ($n = 2^k$)

$$T(n) = \begin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

$$T(n) = T\left(\frac{n}{2}\right) + c$$

 $^{^2}$ Versuche eine geschlossene Form zu finden, indem die Rekurrenz, ausgehend von T(n), wiederholt eingesetzt wird.

Rekurrenz ($n = 2^k$)

$$T(n) = \begin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

$$T(n) = T\left(\frac{n}{2}\right) + c = T\left(\frac{n}{4}\right) + 2c$$

 $^{^2}$ Versuche eine geschlossene Form zu finden, indem die Rekurrenz, ausgehend von T(n), wiederholt eingesetzt wird.

Rekurrenz ($n = 2^k$)

$$T(n) = \begin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

$$T(n) = T\left(\frac{n}{2}\right) + c = T\left(\frac{n}{4}\right) + 2c = \dots$$
$$= T\left(\frac{n}{2^i}\right) + i \cdot c$$

 $^{^2}$ Versuche eine geschlossene Form zu finden, indem die Rekurrenz, ausgehend von T(n), wiederholt eingesetzt wird.

Rekurrenz ($n = 2^k$)

$$T(n) = \begin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

$$T(n) = T\left(\frac{n}{2}\right) + c = T\left(\frac{n}{4}\right) + 2c = \dots$$

$$= T\left(\frac{n}{2^i}\right) + i \cdot c$$

$$= T\left(\frac{n}{2}\right) + \log_2 n \cdot c = d + c \cdot \log_2 n \in \Theta(\log n)$$

 $^{^2}$ Versuche eine geschlossene Form zu finden, indem die Rekurrenz, ausgehend von T(n), wiederholt eingesetzt wird.

$$T(n) = \begin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

Vermutung: $T(n) = d + c \cdot \log_2 n$

Beweis durch Induktion:

$$T(n) = egin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

Vermutung: $T(n) = d + c \cdot \log_2 n$

Beweis durch Induktion:

Induktionsanfang: T(1) = d.

$$T(n) = \begin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

Vermutung: $T(n) = d + c \cdot \log_2 n$

Beweis durch Induktion:

- Induktionsanfang: T(1) = d.
- Hypothese: $T(n/2) = d + c \cdot \log_2 n/2$

$$T(n) = \begin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

Vermutung: $T(n) = d + c \cdot \log_2 n$

Beweis durch Induktion:

- Induktionsanfang: T(1) = d.
- Hypothese: $T(n/2) = d + c \cdot \log_2 n/2$
- Schritt $(n/2 \rightarrow n)$

$$T(n) = T(n/2) + c = d + c \cdot (\log_2 n - 1) + c = d + c \log_2 n.$$

Resultat

Theorem

Der Algorithmus zur binären sortierten Suche benötigt $\Theta(\log n)$ Elementarschritte.

4. Sortieren

Einfache Sortierverfahren, Quicksort, Mergesort

Problemstellung

Eingabe: Ein Array A = (A[1], ..., A[n]) der Länge n.

Ausgabe: Eine Permutation A' von A, die sortiert ist: $A'[i] \leq A'[j]$

für alle 1 < i < j < n.

Auswahl des kleinsten Elementes durch Suche im unsortierten Teil A[i..n] des Arrays.

 $5 \quad 6 \quad 2 \quad 8 \quad 4 \quad 1 \quad (i=1)$

- Auswahl des kleinsten Elementes durch Suche im unsortierten Teil A[i..n] des Arrays.
- Tausche kleinstes
 Element an das erste
 Element des unsortierten
 Teiles.

- Auswahl des kleinsten Elementes durch Suche im unsortierten Teil A[i..n] des Arrays.
- Tausche kleinstes
 Element an das erste
 Element des unsortierten
 Teiles.
- Unsortierter Teil wird ein Element kleiner $(i \rightarrow i+1)$. Wiederhole bis alles sortiert. (i=n)

- Auswahl des kleinsten Elementes durch Suche im unsortierten Teil A[i..n] des Arrays.
- Tausche kleinstes
 Element an das erste
 Element des unsortierten
 Teiles.
- Unsortierter Teil wird ein Element kleiner $(i \rightarrow i+1)$. Wiederhole bis alles sortiert. (i=n)

- Auswahl des kleinsten Elementes durch Suche im unsortierten Teil A[i..n] des Arrays.
- Tausche kleinstes
 Element an das erste
 Element des unsortierten
 Teiles.
- Unsortierter Teil wird ein Element kleiner $(i \rightarrow i+1)$. Wiederhole bis alles sortiert. (i=n)

- Auswahl des kleinsten Elementes durch Suche im unsortierten Teil A[i..n] des Arrays.
- Tausche kleinstes
 Element an das erste
 Element des unsortierten
 Teiles.
- Unsortierter Teil wird ein Element kleiner $(i \rightarrow i+1)$. Wiederhole bis alles sortiert. (i=n)

- 1 2 6 8 4 5 (i=3)
- 1 2 4 8 6 5 (i=4)

- Auswahl des kleinsten Elementes durch Suche im unsortierten Teil A[i..n] des Arrays.
- Tausche kleinstes
 Element an das erste
 Element des unsortierten
 Teiles.
- Unsortierter Teil wird ein Element kleiner $(i \rightarrow i+1)$. Wiederhole bis alles sortiert. (i=n)

- 6

- 8
- (i = 1)

(i = 2)

- 8 8
- 4

4

5 (i = 3)

- 2
- 8
- 6
- 5 (i = 4)

- Auswahl des kleinsten Flementes durch Suche im unsortierten Teil A[i..n] des Arrays.
- Tausche kleinstes Element an das erste Element des unsortierten Teiles.
- Unsortierter Teil wird ein Element kleiner $(i \rightarrow i + 1)$. Wiederhole bis alles sortiert. (i = n)

- 1 6 2 8 4 5 (i=2)
- 1 2 6 8 4 5 (i=3)
- 1 2 4 8 6 5 (i=4)
- 1 2 4 5 6 8 (i=5)

- Auswahl des kleinsten Elementes durch Suche im unsortierten Teil A[i..n] des Arrays.
- Tausche kleinstes
 Element an das erste
 Element des unsortierten
 Teiles.
- Unsortierter Teil wird ein Element kleiner $(i \rightarrow i+1)$. Wiederhole bis alles sortiert. (i=n)

- 1 6 2 8 4 5 (i=2)
- 1 2 6 8 4 5 (i=3)
- 1 2 4 8 6 5 (i=4)
- 1 2 4 5 6 8 (i=5)

- Auswahl des kleinsten Elementes durch Suche im unsortierten Teil A[i..n] des Arrays.
- Tausche kleinstes
 Element an das erste
 Element des unsortierten
 Teiles.
- Unsortierter Teil wird ein Element kleiner $(i \rightarrow i+1)$. Wiederhole bis alles sortiert. (i=n)

- $lacksquare{1}$ $lacksquare{2}$ $lacksquare{6}$ $lacksquare{8}$ $lacksquare{4}$ $lacksquare{5}$ (i=3)
- 1 2 4 8 6 5 (i=4)
- 1 2 4 5 6 8 (i=5)
- 1 2 4 5 6 8 (i=6)

- Auswahl des kleinsten Elementes durch Suche im unsortierten Teil A[i..n] des Arrays.
- Tausche kleinstes
 Element an das erste
 Element des unsortierten
 Teiles.
- Unsortierter Teil wird ein Element kleiner $(i \rightarrow i+1)$. Wiederhole bis alles sortiert. (i=n)

- 1 6 2 8 4 5 (i=2)
- 1 2 6 8 4 5 (i=3)
- 1 2 4 8 6 5 (i=4)
- 1 2 4 5 6 8 (i=5)
- 1 2 4 5 6 8 (i=6)

- Auswahl des kleinsten Elementes durch Suche im unsortierten Teil A[i..n] des Arrays.
- Tausche kleinstes
 Element an das erste
 Element des unsortierten
 Teiles.
- Unsortierter Teil wird ein Element kleiner $(i \rightarrow i+1)$. Wiederhole bis alles sortiert. (i=n)

(i = 1)6 8 8 4 5 (i = 2)5 8 4 (i = 3)8 6 5 (i = 4)6 5 (i = 5)8 5 6 (i = 6)5 6 8

- Auswahl des kleinsten Elementes durch Suche im unsortierten Teil A[i..n] des Arrays.
- Tausche kleinstes
 Element an das erste
 Element des unsortierten
 Teiles.
- Unsortierter Teil wird ein Element kleiner $(i \rightarrow i+1)$. Wiederhole bis alles sortiert. (i=n)

Algorithmus: Sortieren durch Auswahl

```
\begin{array}{ll} \textbf{Input:} & \mathsf{Array}\ A = (A[1], \dots, A[n]),\ n \geq 0. \\ \textbf{Output:} & \mathsf{Sortiertes}\ \mathsf{Array}\ A \\ \textbf{for}\ i \leftarrow 1\ \textbf{to}\ n - 1\ \textbf{do} \\ & p \leftarrow i \\ & \textbf{for}\ j \leftarrow i + 1\ \textbf{to}\ n\ \textbf{do} \\ & \left[ \begin{array}{c} \mathbf{if}\ A[j] < A[p]\ \textbf{then} \\ & \ p \leftarrow j; \\ \\ \mathsf{swap}(A[i], A[p]) \end{array} \right] \end{array}
```

Analyse

Anzahl Vergleiche im schlechtesten Fall:

Analyse

Anzahl Vergleiche im schlechtesten Fall: $\Theta(n^2)$.

Anzahl Vertauschungen im schlechtesten Fall:

Analyse

Anzahl Vergleiche im schlechtesten Fall: $\Theta(n^2)$.

Anzahl Vertauschungen im schlechtesten Fall: $n-1=\Theta(n)$

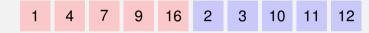
4.1 Mergesort

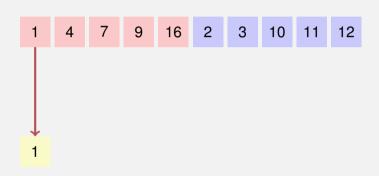
[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

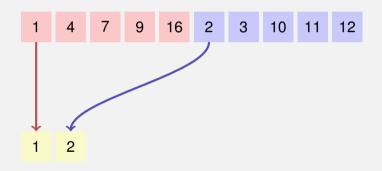
Mergesort (Sortieren durch Verschmelzen)

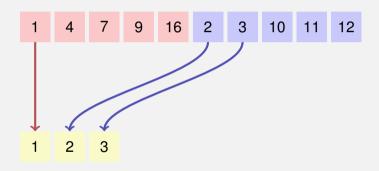
Divide and Conquer!

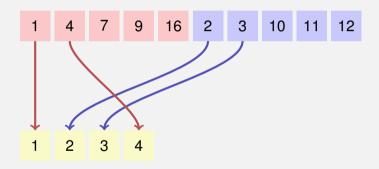
- Annahme: Zwei Hälften eines Arrays A bereits sortiert.
- Folgerung: Minimum von A kann mit 2 Vergleichen ermittelt werden.
- Iterativ: Füge die beiden vorsortierten Hälften von A zusammen in $\mathcal{O}(n)$.

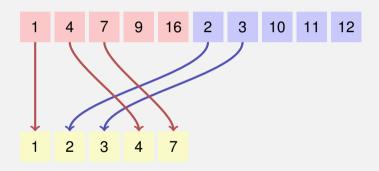


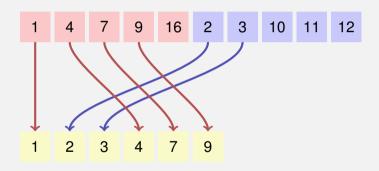


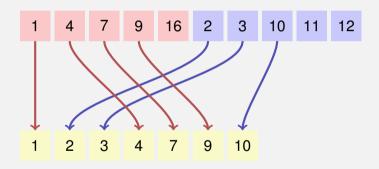


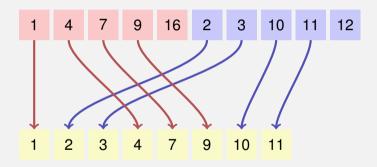


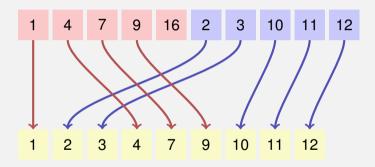


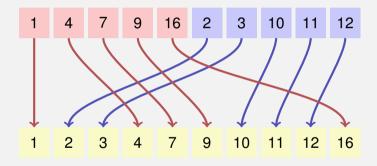








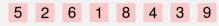


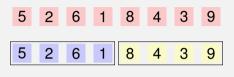


Algorithmus Merge(A, l, m, r)

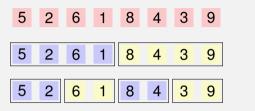
```
Array A der Länge n, Indizes 1 < l < m < r < n.
  Input:
                     A[l,\ldots,m], A[m+1,\ldots,r] sortiert
  Output: A[l, \ldots, r] sortiert
1 B ← new Array(r - l + 1)
i \leftarrow l: i \leftarrow m+1: k \leftarrow 1
3 while i < m and j < r do
4 if A[i] < A[j] then B[k] \leftarrow A[i]; i \leftarrow i+1
b = |\mathbf{else}| B[k] \leftarrow A[j]; j \leftarrow j+1
k \leftarrow k+1:
7 while i < m do B[k] \leftarrow A[i]; i \leftarrow i+1; k \leftarrow k+1
8 while j \le r do B[k] \leftarrow A[j]; j \leftarrow j+1; k \leftarrow k+1
9 for k \leftarrow l to r do A[k] \leftarrow B[k-l+1]
```

5 2 6 1 8 4 3 9





Split



Split

Split

Split

Split

Split

Split

Split

Split

Merge

Split

Split

Split

Merge

Split

Split

Split

Merge

Merge

Mergesort

Split

Split

Split

Merge

Merge

Mergesort

Split

Split

Split

Merge

Merge

Merge

Mergesort

Algorithmus (Rekursives 2-Wege) Mergesort(A, l, r)

```
\begin{array}{lll} \textbf{Input:} & \mathsf{Array}\ A\ \mathsf{der}\ \mathsf{L\"{ange}}\ n.\ 1 \leq l \leq r \leq n \\ \textbf{Output:} & \mathsf{Array}\ A[l,\ldots,r]\ \mathsf{sortiert.} \\ & \mathsf{if}\ l < r\ \mathsf{then} \\ & m \leftarrow \lfloor (l+r)/2 \rfloor & //\ \mathsf{Mittlere}\ \mathsf{Position} \\ & \mathsf{Mergesort}(A,l,m) & //\ \mathsf{Sortiere}\ \mathsf{vordere}\ \mathsf{H\"{a}lfte} \\ & \mathsf{Mergesort}(A,m+1,r) & //\ \mathsf{Sortiere}\ \mathsf{hintere}\ \mathsf{H\"{a}lfte} \\ & \mathsf{Merge}(A,l,m,r) & //\ \mathsf{Verschmelzen}\ \mathsf{der}\ \mathsf{Teilfolgen} \\ \end{array}
```

Analyse

Rekursionsgleichung für die Anzahl Vergleiche und Schlüsselbewegungen:

$$T(n) = T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + \Theta(n)$$

Analyse

Rekursionsgleichung für die Anzahl Vergleiche und Schlüsselbewegungen:

$$T(n) = T(\left\lceil \frac{n}{2} \right\rceil) + T(\left\lfloor \frac{n}{2} \right\rfloor) + \Theta(n) \in \Theta(n \log n)$$

Herleitung für $n=2^k$

Sei $n=2^k$, k>0. Rekurrenz

$$T(n) = \begin{cases} d & \text{falls } n = 1 \\ 2T(n/2) + cn & \text{falls } n > 1 \end{cases}$$

Teleskopieren

$$\begin{split} T(n) &= 2T(n/2) + cn = 2(2T(n/4) + cn/2) + cn \\ &= 2(2(T(n/8) + cn/4) + cn/2) + cn = \dots \\ &= 2(2(\dots(2(2T(n/2^k) + cn/2^{k-1})\dots) + cn/2^2) + cn/2^1) + cn \\ &= 2^kT(1) + \underbrace{2^{k-1}cn/2^{k-1} + 2^{k-2}cn/2^{k-2} + \dots + 2^{k-k}cn/2^{k-k}}_{k\text{Terme}} \\ &= nd + cnk = nd + cn\log_2 n \in \Theta(n\log n). \end{split}$$

4.2 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]

? Was ist der Nachteil von Mergesort?

- Was ist der Nachteil von Mergesort?
- $oldsymbol{\mathbb{O}}$ Benötigt zusätzlich $\Theta(n)$ Speicherplatz für das Verschmelzen.

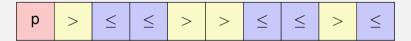
- Was ist der Nachteil von Mergesort?
- f O Benötigt zusätzlich $\Theta(n)$ Speicherplatz für das Verschmelzen.
- Wie könnte man das Verschmelzen einsparen?

- Was ist der Nachteil von Mergesort?
- f O Benötigt zusätzlich $\Theta(n)$ Speicherplatz für das Verschmelzen.
- Wie könnte man das Verschmelzen einsparen?
- O Sorge dafür, dass jedes Element im linken Teil kleiner ist als im rechten Teil.
- ? Wie?

- Was ist der Nachteil von Mergesort?
- $oldsymbol{\mathbb{O}}$ Benötigt zusätzlich $\Theta(n)$ Speicherplatz für das Verschmelzen.
- Wie könnte man das Verschmelzen einsparen?
- O Sorge dafür, dass jedes Element im linken Teil kleiner ist als im rechten Teil.
- ? Wie?
- ① Pivotieren und Aufteilen!

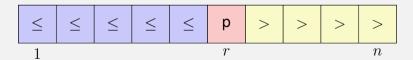
f 1 Wähle ein (beliebiges) Element p als Pivotelement

- Wähle ein (beliebiges) Element p als Pivotelement
- Teile A in zwei Teile auf: einen Teil L der Elemente mit $A[i] \leq p$ und einen Teil R der Elemente mit A[i] > p.



- Wähle ein (beliebiges) Element p als Pivotelement
- Teile A in zwei Teile auf: einen Teil L der Elemente mit $A[i] \leq p$ und einen Teil R der Elemente mit A[i] > p.
- Quicksort: Rekursion auf Teilen L und R

- Wähle ein (beliebiges) Element p als Pivotelement
- Teile A in zwei Teile auf: einen Teil L der Elemente mit $A[i] \leq p$ und einen Teil R der Elemente mit A[i] > p.
- Quicksort: Rekursion auf Teilen L und R



Algorithmus Partition(A[l..r], p)

Input: Array A, welches den Pivot p im Intervall [l,r] mindestens einmal enthält.

Output: Array A partitioniert in [l..r] um p. Rückgabe der Position von p. while $l \le r$ do

$$\begin{array}{l} \textbf{while} \ A[l] p \ \textbf{do} \\ \ \ \, \bigsqcup \ r \leftarrow r-1 \\ \\ \textbf{swap}(A[l], \ A[r]) \\ \textbf{if} \ A[l] = A[r] \ \textbf{then} \\ \ \ \, \bigsqcup \ l \leftarrow l+1 \end{array}$$

return |-1

Algorithmus Quicksort($A[l,\ldots,r]$

```
\begin{array}{ll} \textbf{Input:} & \text{Array } A \text{ der L\"ange } n. \ 1 \leq l \leq r \leq n. \\ \textbf{Output:} & \text{Array } A, \text{ sortiert zwischen } l \text{ und } r. \\ \textbf{if } l < r \text{ then} \\ & \text{W\"ahle Pivot } p \in A[l, \ldots, r] \\ & k \leftarrow \text{Partition}(A[l, \ldots, r], p) \\ & \text{Quicksort}(A[l, \ldots, k-1]) \\ & \text{Quicksort}(A[k+1, \ldots, r]) \end{array}
```

|--|--|--|

p_1	p_2								
-------	-------	--	--	--	--	--	--	--	--

p_1	p_2	p_3							
-------	-------	-------	--	--	--	--	--	--	--

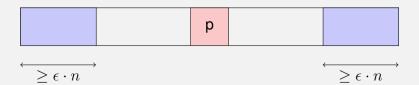
p_1	p_2	p_3	p_4						
-------	-------	-------	-------	--	--	--	--	--	--

p_1	p_2	p_3	p_4	p_5					
-------	-------	-------	-------	-------	--	--	--	--	--

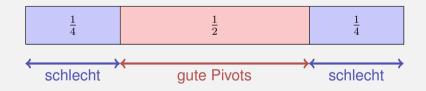
Das Minimum ist ein schlechter Pivot: worst Case $\Theta(n^2)$

p_1	p_2	p_3	p_4	p_5					
-------	-------	-------	-------	-------	--	--	--	--	--

Ein guter Pivot hat linear viele Elemente auf beiden Seiten.



Der Zufall hilft uns (Tony Hoare, 1961). Wähle in jedem Schritt einen zufälligen Pivot.



Wahrscheinlichkeit für guten Pivot nach einem Versuch: $\frac{1}{2} =: \rho$.

Wahrscheinlichkeit für guten Pivot nach k Versuchen: $(1-\rho)^{k-1} \cdot \rho$.

Erwartete Anzahl Versuche³: $1/\rho = 2$

³Erwartungswert der geometrischen Verteilung:

2 4 5 6 8 3 7 9 1

2 4 5 6 8 3 7 9 1

 2
 4
 5
 6
 8
 3
 7
 9
 1

 2
 1
 3
 6
 8
 5
 7
 9
 4

 2
 4
 5
 6
 8
 3
 7
 9
 1

 2
 1
 3
 6
 8
 5
 7
 9
 4

 2
 4
 5
 6
 8
 3
 7
 9
 1

 2
 1
 3
 6
 8
 5
 7
 9
 4

 1
 2
 3
 4
 5
 8
 7
 9
 6

 2
 4
 5
 6
 8
 3
 7
 9
 1

 2
 1
 3
 6
 8
 5
 7
 9
 4

 1
 2
 3
 4
 5
 8
 7
 9
 6

 2
 4
 5
 6
 8
 3
 7
 9
 1

 2
 1
 3
 6
 8
 5
 7
 9
 4

 1
 2
 3
 4
 5
 8
 7
 9
 6

 1
 2
 3
 4
 5
 6
 7
 9
 8

 2
 4
 5
 6
 8
 3
 7
 9
 1

 2
 1
 3
 6
 8
 5
 7
 9
 4

 1
 2
 3
 4
 5
 8
 7
 9
 6

 1
 2
 3
 4
 5
 6
 7
 9
 8

2 4 5 6 8 3 7 9 1 2 1 3 6 8 5 7 9 4 1 2 3 4 5 8 7 9 6 1 2 3 4 5 6 7 9 8 1 2 3 4 5 6 7 8 9

Analyse: Anzahl Vergleiche

Schlechtester Fall.

Analyse: Anzahl Vergleiche

Schlechtester Fall. Pivotelement = Minimum oder Maximum; Anzahl Vergleiche:

$$T(n) = T(n-1) + c \cdot n, \ T(1) = 0 \quad \Rightarrow \quad T(n) \in \Theta(n^2)$$

Analyse (Randomisiertes Quicksort)

Theorem

Im Mittel benötigt randomisiertes Quicksort $\mathcal{O}(n \cdot \log n)$ *Vergleiche.*

(ohne Beweis.)

Praktische Anmerkungen

Für den Pivot wird in der Praxis oft der Median von drei Elementen genommen. Beispiel: Median3(A[l], A[r], A[|l + r/2|]).