
16. Flow in Networks

Flow Network, Maximal Flow, Cut, Rest Network, Max-flow Min-cut
Theorem, Ford-Fulkerson Method, Edmonds-Karp Algorithm,
Maximal Bipartite Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1],
[Cormen et al, Kap. 26.1-26.3]
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Motivation

Modelling flow of fluents, components on conveyors, current in
electrical networks or information flow in communication networks.
Connectivity of Communication Networks, Bipartite Matching,
Circulation, Scheduling, Image Segmentation, Baseball
Eliminination...
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Flow Network

Flow network G = (V,E, c): directed
graph with capacities
Antiparallel edges forbidden:
(u, v) ∈ E ⇒ (v, u) 6∈ E.
Model a missing edge (u, v) by
c(u, v) = 0.
Source s and sink t: special nodes.
Every node v is on a path between s
and t : s v  t
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Flow
A Flow f : V ×V → R fulfills the following
conditions:

Bounded Capacity:
For all u, v ∈ V : f(u, v) ≤ c(u, v).
Skew Symmetry:
For all u, v ∈ V : f(u, v) = −f(v, u).
Conservation of flow:
For all u ∈ V \ {s, t}:

∑

v∈V
f(u, v) = 0.
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Value of the flow:
|f | = ∑

v∈V f(s, v).
Here |f | = 18.
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How large can a flow possibly be?

Limiting factors: cuts

cut separating s from t: Partition of V into S and T with s ∈ S,
t ∈ T .
Capacity of a cut: c(S, T ) =

∑
v∈S,v′∈T c(v, v

′)

Minimal cut: cut with minimal capacity.
Flow over the cut: f(S, T ) =

∑
v∈S,v′∈T f(v, v

′)
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Implicit Summation
Notation: Let U,U ′ ⊆ V

f(U,U ′) :=
∑

u∈U
u′∈U ′

f(u, u′), f(u, U ′) := f({u}, U ′)

Thus

|f | = f(s, V )

f(U,U) = 0

f(U,U ′) = −f(U ′, U)

f(X ∪ Y, Z) = f(X,Z) + f(Y, Z), if X ∩ Y = ∅.
f(R, V ) = 0 if R ∩ {s, t} = ∅. [flow conversation!]
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How large can a flow possibly be?
For each flow and each cut it holds that f(S, T ) = |f |:

f(S, T ) = f(S, V )− f(S, S)︸ ︷︷ ︸
0

= f(S, V )

= f(s, V ) + f(S − {s}︸ ︷︷ ︸
63t,63s

, V ) = |f |.
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Maximal Flow ?
In particular, for each cut (S, T ) of V .

|f | ≤
∑

v∈S,v′∈T
c(v, v′) = c(S, T )

Will discover that equality holds for minS,T c(S, T ).
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Maximal Flow ?

Naive Procedure
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Conclusion: greedy increase of flow does not solve the problem.
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The Method of Ford-Fulkerson
Start with f(u, v) = 0 for all u, v ∈ V

Determine rest network* Gf and expansion path in Gf

Increase flow via expansion path*
Repeat until no expansion path available.

Gf := (V,Ef , cf)

cf(u, v) := c(u, v)− f(u, v) ∀u, v ∈ V

Ef := {(u, v) ∈ V × V |cf(u, v) > 0}

*Will now be explained
418

Increase of flow, negative!

Let some flow f in the network be given.

Finding:

Increase of the flow along some edge possible, when flow can be
increased along the edge,i.e. if f(u, v) < c(u, v).
Rest capacity cf(u, v) = c(u, v)− f(u, v) > 0.
Increase of flow against the direction of the edge possible, if flow
can be reduced along the edge, i.e. if f(u, v) > 0.
Rest capacity cf(v, u) = f(u, v) > 0.
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Rest Network

Rest network Gf provided by the edges with positive rest capacity:

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

s

v1

v2

v3

v4

t
8

8

3

10

12

4

10

6

14

4

5

4

4 1 6

Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel

capacity-edges
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Observation

Theorem
Let G = (V,E, c) be a flow network with source s and sink t and f a
flow in G. Let Gf be the corresponding rest networks and let f ′ be a
flow in Gf . Then f ⊕ f ′ with

(f ⊕ f ′)(u, v) = f(u, v) + f ′(u, v)

defines a flow in G with value |f |+ |f ′|.
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Proof
f ⊕ f ′ defines a flow in G:

capacity limit

(f ⊕ f ′)(u, v) = f(u, v) + f ′(u, v)︸ ︷︷ ︸
≤c(u,v)−f(u,v)

≤ c(u, v)

skew symmetry

(f ⊕ f ′)(u, v) = −f(v, u) +−f ′(v, u) = −(f ⊕ f ′)(v, u)

flow conservation u ∈ V − {s, t}:
∑

v∈V
(f ⊕ f ′)(u, v) =

∑

v∈V
f(u, v) +

∑

v∈V
f ′(u, v) = 0
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Proof

Value of f ⊕ f ′

|f ⊕ f ′| = (f ⊕ f ′)(s, V )

=
∑

u∈V
f(s, u) + f ′(s, u)

= f(s, V ) + f ′(s, V )

= |f |+ |f ′|

�
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Augmenting Paths

expansion path p: simple path from s to t in the rest network Gf .

Rest capacity cf(p) = min{cf(u, v) : (u, v) edge in p}
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Flow in Gf

Theorem
The mapping fp : V × V → R,

fp(u, v) =





cf(p) if (u, v) edge in p

−cf(p) if (v, u) edge in p

0 otherwise

provides a flow in Gf with value |fp| = cf(p) > 0.

fp is a flow (easy to show). there is one and only one u ∈ V with
(s, u) ∈ p. Thus |fp| =

∑
v∈V fp(s, v) = fp(s, u) = cf(p).
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Consequence

Strategy for an algorithm:

With an expansion path p in Gf the flow f ⊕ fp defines a new flow
with value |f ⊕ fp| = |f |+ |fp| > |f |.
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Max-Flow Min-Cut Theorem

Theorem
Let f be a flow in a flow network G = (V,E, c) with source s and
sink t. The following statementsa are equivalent:

1 f is a maximal flow in G

2 The rest network Gf does not provide any expansion paths
3 It holds that |f | = c(S, T ) for a cut (S, T ) of G.

427

[Proof]

(3)⇒ (1):
It holds that |f | ≤ c(S, T ) for all cuts S, T . From |f | = c(S, T ) it
follows that |f | is maximal.
(1)⇒ (2):
f maximal Flow in G. Assumption: Gf has some expansion path
|f ⊕ fp| = |f |+ |fp| > |f |. Contradiction.

(not shown in class) 428



[Proof (2)⇒ (3)]
Assumption: Gf has no expansion path

Define S = {v ∈ V : there is a path s v in Gf}.
(S, T ) := (S, V \ S) is a cut: s ∈ S, t ∈ T .

Let u ∈ S and v ∈ T . Then cf(u, v) = 0, also
cf(u, v) = c(u, v)− f(u, v) = 0. Somit f(u, v) = c(u, v).

Thus

|f | = f(S, T ) =
∑

u∈S

∑

v∈T
f(u, v) =

∑

u∈S

∑

v∈T
c(u, v) = C(S, T ).

�
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Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V,E, c)
Output: Maximal flow f .

for (u, v) ∈ E do
f(u, v)← 0

while Exists path p : s t in rest network Gf do
cf (p)← min{cf (u, v) : (u, v) ∈ p}
foreach (u, v) ∈ p do

f(u, v)← f(u, v) + cf (p)
f(v, u)← f(v, u)− cf (p)
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Practical Consideration

In an implementation of the Ford-Fulkerson algorithm the negative
flow egdes are usually not stored because their value always equals
the negated value of the antiparallel edge.

f(u, v)← f(u, v) + cf (p)
f(v, u)← f(v, u)− cf (p)

is then transformed to
if (u, v) ∈ E then

f(u, v)← f(u, v) + cf (p)
else

f(v, u)← f(v, u)− cf (p)
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Analysis

The Ford-Fulkerson algorithm does not
necessarily have to converge for irrational
capacities. For integers or rational numbers it
terminates.
For an integer flow, the algorithms requires
maximally |fmax| iterations of the while loop
(because the flow increases minimally by 1).
Search a single increasing path (e.g. with
DFS or BFS) O(|E|) Therefore O(fmax|E|).
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With an unlucky choice the al-
gorithm may require up to 2000
iterations here.
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Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in Gf the
expansion path of shortest possible length (e.g. with BFS)
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Edmonds-Karp Algorithm

Theorem
When the Edmonds-Karp algorithm is applied to some integer
valued flow network G = (V,E) with source s and sink t then the
number of flow increases applied by the algorithm is in O(|V | · |E|).
⇒ Overal asymptotic runtime: O(|V | · |E|2)

[Without proof]
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Application: maximal bipartite matching
Given: bipartite undirected graph G = (V,E).

Matching M : M ⊆ E such that |{m ∈M : v ∈ m}| ≤ 1 for all v ∈ V .

Maximal Matching M : Matching M , such that |M | ≥ |M ′| for each
matching M ′.
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Corresponding flow network
Construct a flow network that corresponds to the partition L,R of a
bipartite graph with source s and sink t, with directed edges from s
to L, from L to R and from R to t. Each edge has capacity 1.

L R

s t

L R
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[Integer number theorem]

Theorem
If the capacities of a flow network are integers, then the maximal
flow generated by the Ford-Fulkerson method provides integer
numbers for each f(u, v), u, v ∈ V .

[without proof]

Consequence: Ford-Fulkerson generates for a flow network that
corresponds to a bipartite graph a maximal matching
M = {(u, v) : f(u, v) = 1}.

(not shown in class) 437


