
15. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT
Union-Find, Algorithm Jarnik, Prim, Dijkstra, [Ottman/Widmayer,
Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

381

Problem

Given: Undirected, weighted, connected graph G = (V,E, c).

Wanted: Minimum Spanning Tree T = (V,E ′): connected, cycle-free
subgraph E ′ ⊂ E, such that

∑
e∈E′ c(e) minimal.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

382

Application Examples

Network-Design: find the cheapest / shortest network that
connects all nodes.
Approximation of a solution of the travelling salesman problem:
find a round-trip, as short as possible, that visits each node once.
25

25The best known algorithm to solve the TS problem exactly has exponential running time.
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Greedy Procedure

Greedy algorithms compute the solution stepwise choosing locally
optimal solutions.
Most problems cannot be solved with a greedy algorithm.
The Minimum Spanning Tree problem can be solved with a greedy
strategy.
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Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a
cycle.
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(Solution is not unique.)
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Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V,E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |E| do

if (V,A ∪ {ek}) acyclic then
A← A ∪ {ek}

return (V,A, c)
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[Correctness]

At each point in the algorithm (V,A) is a forest, a set of trees.

MST-Kruskal considers each edge ek exactly once and either
chooses or rejects ek

Notation (snapshot of the state in the running algorithm)

A: Set of selected edges
R: Set of rejected edges
U : Set of yet undecided edges

(not shown in class) 387

[Cut]
A cut of G is a partition S, V − S of V . (S ⊆ V ).

An edge crosses a cut when one of its endpoints is in S and the
other is in V \ S.

S

V \ S

(not shown in class) 388



[Rules]

1 Selection rule: choose a cut that is not crossed by a selected
edge. Of all undecided edges that cross the cut, select the one
with minimal weight.

2 Rejection rule: choose a circle without rejected edges. Of all
undecided edges of the circle, reject those with minimal weight.
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[Rules]

Kruskal applies both rules:

1 A selected ek connects two connection components, otherwise
it would generate a circle. ek is minimal, i.e. a cut can be
chosen such that ek crosses and ek has minimal weight.

2 A rejected ek is contained in a circle. Within the circle ek has
minimal weight.
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[Correctness]

Theorem
Every algorithm that applies the rules above in a step-wise manner
until U = ∅ is correct.

Consequence: MST-Kruskal is correct.
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[Selection invariant]

Invariant: At each step there is a minimal spanning tree that contains
all selected and none of the rejected edges.

If both rules satisfy the invariant, then the algorithm is correct.
Induction:

At beginning: U = E, R = A = ∅. Invariant obviously holds.
Invariant is preserved at each step of the algorithm.
At the end: U = ∅, R ∪ A = E ⇒ (V,A) is a spanning tree.

Proof of the theorem: show that both rules preserve the invariant.
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[Selection rule preserves the invariant]

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the egde e with
minimal weight.

Case 1: e ∈ T (done)
Case 2: e 6∈ T . Then T ∪ {e} contains a circle that contains e
Circle must have a second edge e′ that also crosses the cut.26

Because e′ 6∈ R , e′ ∈ U . Thus c(e) ≤ c(e′) and T ′ = T \ {e′}∪{e}
is also a minimal spanning tree (and c(e) = c(e′)).

26Such a circle contains at least one node in S and one node in V \ S and therefore at lease to edges between S and
V \ S.
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[Rejection rule preserves the invariant]

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a circle without rejected edges. Of all undecided edges of the circle, reject an edge e with minimal weight.

Case 1: e 6∈ T (done)
Case 2: e ∈ T . Remove e from T , This yields a cut. This cut must
be crossed by another edge e′ of the circle. Because c(e′) ≤ c(e) ,
T ′ = T \ {e} ∪ {e′} is also minimal (and c(e) = c(e′)).
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Implementation Issues

Consider a set of sets i ≡ Ai ⊂ V . To identify cuts and circles:
membership of the both ends of an edge to sets?
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Implementation Issues

General problem: partition (set of subsets) .e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}
Required: Abstract data type “Union-Find” with the following
operations

Make-Set(i): create a new set represented by i.
Find(e): name of the set i that contains e .
Union(i, j): union of the sets with names i and j.
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Union-Find Algorithm MST-Kruskal(G)
Input: Weighted Graph G = (V,E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |V | do

MakeSet(k)

for k = 1 to m do
(u, v)← ek
if Find(u) 6= Find(v) then

Union(Find(u),Find(v))
A← A ∪ ek

else // conceptual: R← R ∪ ek

return (V,A, c)

397

Implementation Union-Find

Idea: tree for each subset in the partition,e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}
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roots = names (representatives) of the sets,
trees = elements of the sets
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Implementation Union-Find
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Representation as array:

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10
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Implementation Union-Find

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

Make-Set(i) p[i]← i; return i

Find(i) while (p[i] 6= i) do i← p[i]
return i

Union(i, j) 27 p[j]← i;

27i and j need to be names (roots) of the sets. Otherwise use Union(Find(i),Find(j))
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Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8, 7), Union(7, 6),
Union(6, 5), ...

Index 1 2 3 4 5 6 7 8 ..
Parent 1 1 2 3 4 5 6 7 ..

Worst-case running time of Find in Θ(n).
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Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional
size information (array) g

Make-Set(i) p[i]← i; g[i]← 1; return i

Union(i, j)
if g[j] > g[i] then swap(i, j)
p[j]← i
if g[i] = g[j] then g[i]← g[i] + 1

⇒ Tree depth (and worst-case running time for Find) in Θ(log n)
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[Observation]

Theorem
The method above (union by size) preserves the following property
of the trees: a tree of height h has at least 2h nodes.

Immediate consequence: runtime Find = O(log n).
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[Proof]

Induction: by assumption, sub-trees have at
least 2hi nodes. WLOG: h2 ≤ h1

h2 < h1:

h(T1 ⊕ T2) = h1 ⇒ g(T1 ⊕ T2) ≥ 2h

h2 = h1:

g(T1) ≥ g(T2) ≥ 2h2

⇒g(T1 ⊕ T2) = g(T1) + g(T2) ≥ 2 · 2h2 = 2h(T1⊕T2)

T1

T2

h1

h2
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Further improvement

Link all nodes to the root when Find is called.

Find(i):
j ← i
while (p[i] 6= i) do i← p[i]
while (j 6= i) do

t← j
j ← p[j]
p[t]← i

return i

Cost: amortised nearly constant (inverse of the
Ackermann-function).28

28We do not go into details here.
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Running time of Kruskal’s Algorithm

Sorting of the edges: Θ(|E| log |E|) = Θ(|E| log |V |). 29

Initialisation of the Union-Find data structure Θ(|V |)
|E|× Union(Find(x),Find(y)): O(|E| log |E|) = O(|E| log |V |).

Overal Θ(|E| log |V |).

29because G is connected: |V | ≤ |E| ≤ |V |2
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Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some v ∈ V and grow the spanning tree from here
by the acceptance rule.

A← ∅
S ← {v0}
for i← 1 to |V | do

Choose cheapest (u, v) mit u ∈ S, v 6∈ S
A← A ∪ {(u, v)}
S ← S ∪ {v} // (Coloring)

S

V \ S

Remark: a union-Find data structure is not required. It suffices to
color nodes when they are added to S.
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Running time

Trivially O(|V | · |E|).
Improvement (like with Dijkstra’s ShortestPath)

With Min-Heap: costs

Initialization (node coloring) O(|V |)
|V |× ExtractMin = O(|V | log |V |),
|E|× Insert or DecreaseKey: O(|E| log |V |),

O(|E| · log |V |)
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