15. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT
Union-Find, Algorithm Jarnik, Prim, Dijkstra, [Ottman/Widmayer,
Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

381

Application Examples

m Network-Design: find the cheapest / shortest network that
connects all nodes.

m Approximation of a solution of the travelling salesman problem:

find a round-trip, as short as possible, that visits each node once.
25

25The best known algorithm to solve the TS problem exactly has exponential running time.
383

Problem

Given: Undirected, weighted, connected graph G = (V, E, ¢).

Wanted: Minimum Spanning Tree 7' = (V, E’): connected, cycle-free
subgraph £’ C E, such that) _,, c(e) minimal.

t

w

AN

IZN

u X

S 6

382

Greedy Procedure

m Greedy algorithms compute the solution stepwise choosing locally
optimal solutions.

m Most problems cannot be solved with a greedy algorithm.

m The Minimum Spanning Tree problem can be solved with a greedy
strategy.

384

Greedy Idea (Kruskal, 1956)

Construct 7" by adding the cheapest edge that does not generate a
cycle.

(Solution is not unique.)

385

[Correctness]

At each point in the algorithm (V A) is a forest, a set of trees.

MST-Kruskal considers each edge e, exactly once and either
chooses or rejects ¢y,

Notation (snapshot of the state in the running algorithm)
m A: Set of selected edges

m R: Set of rejected edges
m U: Set of yet undecided edges

Algorithm MST-Kruskal((7)

Input: Weighted Graph G = (V| E, ¢)
Output: Minimum spanning tree with edges A.
Sort edges by weight c(e;) < ... < c(ep)
A+
for k =1to |E| do
if (V, AU {ex}) acyclic then
A+ Aude}

return (V, A, c)

[Cut]

A cut of G is a partition S,V — Sof V. (S C V).

An edge crosses a cut when one of its endpoints is in S and the
otherisin V'\ S.

[Rules]

Selection rule: choose a cut that is not crossed by a selected
edge. Of all undecided edges that cross the cut, select the one
with minimal weight.

Rejection rule: choose a circle without rejected edges. Of all
undecided edges of the circle, reject those with minimal weight.

(not shown in class) 389

[Correctness]

Every algorithm that applies the rules above in a step-wise manner
until U = () is correct.

Consequence: MST-Kruskal is correct.

(not shown in class) 391

[Rules]

Kruskal applies both rules:

A selected ¢;, connects two connection components, otherwise
it would generate a circle. e;, is minimal, i.e. a cut can be
chosen such that e, crosses and e; has minimal weight.

A rejected ¢y, is contained in a circle. Within the circle e;, has
minimal weight.

(not shown in class) 390

[Selection invariant]

Invariant: At each step there is a minimal spanning tree that contains
all selected and none of the rejected edges.

If both rules satisfy the invariant, then the algorithm is correct.
Induction:

m At beginning: U = E, R = A = (). Invariant obviously holds.
m Invariant is preserved at each step of the algorithm.
m Attheend: U =0, RUA = FE = (V, A) is a spanning tree.

Proof of the theorem: show that both rules preserve the invariant.

(not shown in class) 392

[Selection rule preserves the invariant] [Rejection rule preserves the invariant]

At each step there is a minimal spanning tree T" that contains all selected and none of the rejected edges.
Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the egde e with At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

minimal weight. Choose a circle without rejected edges. Of all undecided edges of the circle, reject an edge e with minimal weight.

m Case 1: e € T (done)

m Case2: e ¢ T. Then T U {e} contains a circle that contains e m Case 1: ¢ ¢ 7' (done)
Circle must have a second edge ¢’ that also crosses the cut.?® m Case 2: e € T'. Remove e from T, This yields a cut. This cut must
Because ¢’ ¢ R, e € U. Thus c(e) < c(¢/) and T’ = T\ {e'} U {e} be crossed by another edge ¢’ of the circle. Because c(¢’) < ¢(e) ,
is also a minimal spanning tree (and c(e) = ¢(€)). T'=T\{e} U{e'} is also minimal (and c(e) = ¢(¢')).

263uch a circle contains at least one node in S and one node in V' \ S and therefore at lease to edges between S and
V\S.

(not shown in class) 393 (not shown in class) 394

Implementation Issues Implementation Issues
Consider a set of sets i = A; C V. To identify cuts and circles: General problem: partition (set of subsets) .e.g.
membership of the both ends of an edge to sets? {{1,2,3,9},{7,6,4}, {5,8}, {10}}

Required: Abstract data type “Union-Find” with the following

‘i:.\, operations
@ m Make-Set(:): create a new set represented by .

{ m Find(e): name of the set ¢ that contains e .
® m Union(z, j): union of the sets with names 7 and ;.

395 396

Union-Find Algorithm MST-Kruskal(()

Input: Weighted Graph G = (V, E, ¢)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) < ... < c(en)
A0
for k=1to |V| do
. MakeSet(k)
for k =1 tom do
(u,v) < e
if Find(u) # Find(v) then
Union(Find(u), Find(v))
A+ AU €k
else // conceptual: R <— RU ey

return (V, A, ¢)

397

Implementation Union-Find

W)) 5D 102
2/ \3 7/ \4 1
T

9

Representation as array:

Index

123456789 10
Parent 1 1 1 6 5 6 55 3 10

399

Implementation Union-Find

Idea: tree for each subset in the partition,e.g.

{{1,2,3,9},{7,6,4},{5,8}, {10}}

12-) 6\‘-) 5D 10“.)
2/ ’\3 7/ \4 1
|

9

roots = names (representatives) of the sets,
trees = elements of the sets

398

Implementation Union-Find

Index

1234567289 10
Parent 1 1 1 6 5 6 55 3 10

Make-Set()

pli] < i; return i

while (p[i] # i) do i « p]i]
return ¢

Find(i)

Union(i, 5) 2 plj] « i;

27; and j need to be names (roots) of the sets. Otherwise use Union(Find(z),Find(5))
400

Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8, 7), Union(7, 6),
Union(6, 5), ...

Index 1 2 3 456 7 8 ..
Parent 1 1 2 3 4 5 6 7 .
Worst-case running time of Find in ©(n).

401

[Observation]

The method above (union by size) preserves the following property
of the trees: a tree of height h has at least 2" nodes.

Immediate consequence: runtime Find = O(logn).

Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional
size information (array) g

Make-Set(i) pli] < 4 g[i] < 1; return i

if g[j] > g[i] then swap(i, j)
plj] i
if g[i] = g[j] then g[i] « g[i] + 1

Union(z,)

= Tree depth (and worst-case running time for Find) in ©(logn)

402

[Proof]

Induction: by assumption, sub-trees have at
least 2" nodes. WLOG: hy < hy

CP

N

[] hg = h1: h2
15

| h2<h1:

MO Ty =h = g1 ®T) > 2" hy

g(Th) > g(Ty) > 2"

=911 & Ty) = g(Th) + g(Tp) > 2- 2" = 20T

Further improvement

Link all nodes to the root when Find is called.
Find(z):
ji
while (p[i] # i) do i « p]i]
while (5 # i) do
t+7J
j < plJ]
B plt] + i
return
Cost: amortised nearly constant (inverse of the
Ackermann-function).28

28We do not go into details here.

405

Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some v € V' and grow the spanning tree from here
by the acceptance rule.

A0
S+ {Uo}
for i < 1to |V| do
Choose cheapest (u,v) mitu e S, v &S
A+ AU{(u,v)} Sy VS
S+« Su{v} // (Coloring) ‘ ®

Remark: a union-Find data structure is not required. It suffices to
color nodes when they are added to S.

407

Running time of Kruskal’s Algorithm

m Sorting of the edges: O(|E|log |E|) = O(|E|log |V]). °
m Initialisation of the Union-Find data structure ©(|V])
m |E|x Union(Find(z),Find(y)): O(|E|log |E|) = O(|E|log|V]).

Overal O(|E|log |V).

pecause G is connected: [V| < |E| < |V|?
406

Running time

Trivially O(|V| - | E]).
Improvement (like with Dijkstra’s ShortestPath)
m With Min-Heap: costs

m Initialization (node coloring) O(|V])
m |V |x ExtractMin = O(|V]log|V]),
m |E|x Insert or DecreaseKey: O(|E|log |V]),

O(|E] - log V)

408

