
15. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT
Union-Find, Algorithm Jarnik, Prim, Dijkstra, [Ottman/Widmayer,
Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

381

Problem

Given: Undirected, weighted, connected graph G = (V,E, c).

Wanted: Minimum Spanning Tree T = (V,E ′): connected, cycle-free
subgraph E ′ ⊂ E, such that

∑
e∈E′ c(e) minimal.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

382

Application Examples

Network-Design: find the cheapest / shortest network that
connects all nodes.
Approximation of a solution of the travelling salesman problem:
find a round-trip, as short as possible, that visits each node once.
25

25The best known algorithm to solve the TS problem exactly has exponential running time.
383

Greedy Procedure

Greedy algorithms compute the solution stepwise choosing locally
optimal solutions.
Most problems cannot be solved with a greedy algorithm.
The Minimum Spanning Tree problem can be solved with a greedy
strategy.

384

Greedy Idea (Kruskal, 1956)

Construct T by adding the cheapest edge that does not generate a
cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

385

Algorithm MST-Kruskal(G)

Input: Weighted Graph G = (V,E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |E| do

if (V,A ∪ {ek}) acyclic then
A← A ∪ {ek}

return (V,A, c)

386

[Correctness]

At each point in the algorithm (V,A) is a forest, a set of trees.

MST-Kruskal considers each edge ek exactly once and either
chooses or rejects ek

Notation (snapshot of the state in the running algorithm)

A: Set of selected edges
R: Set of rejected edges
U : Set of yet undecided edges

(not shown in class) 387

[Cut]
A cut of G is a partition S, V − S of V . (S ⊆ V).

An edge crosses a cut when one of its endpoints is in S and the
other is in V \ S.

S

V \ S

(not shown in class) 388

[Rules]

1 Selection rule: choose a cut that is not crossed by a selected
edge. Of all undecided edges that cross the cut, select the one
with minimal weight.

2 Rejection rule: choose a circle without rejected edges. Of all
undecided edges of the circle, reject those with minimal weight.

(not shown in class) 389

[Rules]

Kruskal applies both rules:

1 A selected ek connects two connection components, otherwise
it would generate a circle. ek is minimal, i.e. a cut can be
chosen such that ek crosses and ek has minimal weight.

2 A rejected ek is contained in a circle. Within the circle ek has
minimal weight.

(not shown in class) 390

[Correctness]

Theorem
Every algorithm that applies the rules above in a step-wise manner
until U = ∅ is correct.

Consequence: MST-Kruskal is correct.

(not shown in class) 391

[Selection invariant]

Invariant: At each step there is a minimal spanning tree that contains
all selected and none of the rejected edges.

If both rules satisfy the invariant, then the algorithm is correct.
Induction:

At beginning: U = E, R = A = ∅. Invariant obviously holds.
Invariant is preserved at each step of the algorithm.
At the end: U = ∅, R ∪ A = E ⇒ (V,A) is a spanning tree.

Proof of the theorem: show that both rules preserve the invariant.

(not shown in class) 392

[Selection rule preserves the invariant]

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the egde e with
minimal weight.

Case 1: e ∈ T (done)
Case 2: e 6∈ T . Then T ∪ {e} contains a circle that contains e
Circle must have a second edge e′ that also crosses the cut.26

Because e′ 6∈ R , e′ ∈ U . Thus c(e) ≤ c(e′) and T ′ = T \ {e′}∪{e}
is also a minimal spanning tree (and c(e) = c(e′)).

26Such a circle contains at least one node in S and one node in V \ S and therefore at lease to edges between S and
V \ S.

(not shown in class) 393

[Rejection rule preserves the invariant]

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a circle without rejected edges. Of all undecided edges of the circle, reject an edge e with minimal weight.

Case 1: e 6∈ T (done)
Case 2: e ∈ T . Remove e from T , This yields a cut. This cut must
be crossed by another edge e′ of the circle. Because c(e′) ≤ c(e) ,
T ′ = T \ {e} ∪ {e′} is also minimal (and c(e) = c(e′)).

(not shown in class) 394

Implementation Issues

Consider a set of sets i ≡ Ai ⊂ V . To identify cuts and circles:
membership of the both ends of an edge to sets?

395

Implementation Issues

General problem: partition (set of subsets) .e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}
Required: Abstract data type “Union-Find” with the following
operations

Make-Set(i): create a new set represented by i.
Find(e): name of the set i that contains e .
Union(i, j): union of the sets with names i and j.

396

Union-Find Algorithm MST-Kruskal(G)
Input: Weighted Graph G = (V,E, c)
Output: Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |V | do

MakeSet(k)

for k = 1 to m do
(u, v)← ek
if Find(u) 6= Find(v) then

Union(Find(u),Find(v))
A← A ∪ ek

else // conceptual: R← R ∪ ek

return (V,A, c)

397

Implementation Union-Find

Idea: tree for each subset in the partition,e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}

1

2 3

9

6

7 4

5

8

10

roots = names (representatives) of the sets,
trees = elements of the sets

398

Implementation Union-Find

1

2 3

9

6

7 4

5

8

10

Representation as array:

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

399

Implementation Union-Find

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

Make-Set(i) p[i]← i; return i

Find(i) while (p[i] 6= i) do i← p[i]
return i

Union(i, j) 27 p[j]← i;

27i and j need to be names (roots) of the sets. Otherwise use Union(Find(i),Find(j))
400

Optimisation of the runtime for Find

Tree may degenerate. Example: Union(8, 7), Union(7, 6),
Union(6, 5), ...

Index 1 2 3 4 5 6 7 8 ..
Parent 1 1 2 3 4 5 6 7 ..

Worst-case running time of Find in Θ(n).

401

Optimisation of the runtime for Find

Idea: always append smaller tree to larger tree. Requires additional
size information (array) g

Make-Set(i) p[i]← i; g[i]← 1; return i

Union(i, j)
if g[j] > g[i] then swap(i, j)
p[j]← i
if g[i] = g[j] then g[i]← g[i] + 1

⇒ Tree depth (and worst-case running time for Find) in Θ(log n)

402

[Observation]

Theorem
The method above (union by size) preserves the following property
of the trees: a tree of height h has at least 2h nodes.

Immediate consequence: runtime Find = O(log n).

(not shown in class) 403

[Proof]

Induction: by assumption, sub-trees have at
least 2hi nodes. WLOG: h2 ≤ h1

h2 < h1:

h(T1 ⊕ T2) = h1 ⇒ g(T1 ⊕ T2) ≥ 2h

h2 = h1:

g(T1) ≥ g(T2) ≥ 2h2

⇒g(T1 ⊕ T2) = g(T1) + g(T2) ≥ 2 · 2h2 = 2h(T1⊕T2)

T1

T2

h1

h2

(not shown in class) 404

Further improvement

Link all nodes to the root when Find is called.

Find(i):
j ← i
while (p[i] 6= i) do i← p[i]
while (j 6= i) do

t← j
j ← p[j]
p[t]← i

return i

Cost: amortised nearly constant (inverse of the
Ackermann-function).28

28We do not go into details here.
405

Running time of Kruskal’s Algorithm

Sorting of the edges: Θ(|E| log |E|) = Θ(|E| log |V |). 29

Initialisation of the Union-Find data structure Θ(|V |)
|E|× Union(Find(x),Find(y)): O(|E| log |E|) = O(|E| log |V |).

Overal Θ(|E| log |V |).

29because G is connected: |V | ≤ |E| ≤ |V |2
406

Algorithm of Jarnik (1930), Prim, Dijkstra (1959)

Idea: start with some v ∈ V and grow the spanning tree from here
by the acceptance rule.

A← ∅
S ← {v0}
for i← 1 to |V | do

Choose cheapest (u, v) mit u ∈ S, v 6∈ S
A← A ∪ {(u, v)}
S ← S ∪ {v} // (Coloring)

S

V \ S

Remark: a union-Find data structure is not required. It suffices to
color nodes when they are added to S.

407

Running time

Trivially O(|V | · |E|).
Improvement (like with Dijkstra’s ShortestPath)

With Min-Heap: costs

Initialization (node coloring) O(|V |)
|V |× ExtractMin = O(|V | log |V |),
|E|× Insert or DecreaseKey: O(|E| log |V |),

O(|E| · log |V |)

408

