Computer Science II

Course at D-BAUG, ETH Zurich

Felix Friedrich & Hermann Lehner

SS 2019

1. Introduction

Algorithms and Data Structures, Correctness, a First Example

- Understand the design and analysis of fundamental algorithms and data structures.
- Understand how an algorithmic problem is mapped to a sufficiently efficient computer program.

Contents

data structures / algorithms

The notion invariant, cost model, Landau notation

algorithms design, induction

searching, selection and sorting

dictionaries: hashing and search trees, balanced trees

dynamic programming

fundamental graph algorithms, shortest paths, maximum flow

Python Introduction Python Datastructures

1.1 Algorithms

[Cormen et al, Kap. 1;Ottman/Widmayer, Kap. 1.1]

Algorithm: well defined computing procedure to compute *output* data from *input* data

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Input: Output: A sequence of n numbers (a_1, a_2, \ldots, a_n) Permutation $(a'_1, a'_2, \ldots, a'_n)$ of the sequence $(a_i)_{1 \le i \le n}$, such that $a'_1 \le a'_2 \le \cdots \le a'_n$

Input: Output:

A sequence of
$$n$$
 numbers (a_1, a_2, \ldots, a_n)
Permutation $(a'_1, a'_2, \ldots, a'_n)$ of the sequence $(a_i)_{1 \le i \le n}$, such that $a'_1 \le a'_2 \le \cdots \le a'_n$

Possible input

(1, 7, 3), (15, 13, 12, -0.5), $(1) \dots$

Input: Output:

A sequence of
$$n$$
 numbers (a_1, a_2, \ldots, a_n)
Permutation $(a'_1, a'_2, \ldots, a'_n)$ of the sequence $(a_i)_{1 \le i \le n}$, such that $a'_1 \le a'_2 \le \cdots \le a'_n$

Possible input

$$(1, 7, 3)$$
, $(15, 13, 12, -0.5)$, $(1) \dots$

Every example represents a *problem instance*

The performance (speed) of an algorithm usually depends on the problem instance. Often there are "good" and "bad" instances.

Tables and statistis: sorting, selection and searching

Tables and statistis: sorting, selection and searching
 routing: shortest path algorithm, heap data structure

Tables and statistis: sorting, selection and searching
 routing: shortest path algorithm, heap data structure
 DNA matching: Dynamic Programming

- Tables and statistis: sorting, selection and searching
- routing: shortest path algorithm, heap data structure
- DNA matching: Dynamic Programming
- evaluation order: Topological Sorting

- Tables and statistis: sorting, selection and searching
- routing: shortest path algorithm, heap data structure
- DNA matching: Dynamic Programming
- evaluation order: Topological Sorting
- autocomletion and spell-checking: Dictionaries / Trees

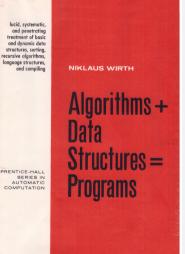
- Tables and statistis: sorting, selection and searching
- routing: shortest path algorithm, heap data structure
- DNA matching: Dynamic Programming
- evaluation order: Topological Sorting
- autocomletion and spell-checking: Dictionaries / Trees
- Fast Lookup : Hash-Tables

- Tables and statistis: sorting, selection and searching
- routing: shortest path algorithm, heap data structure
- DNA matching: Dynamic Programming
- evaluation order: Topological Sorting
- autocomletion and spell-checking: Dictionaries / Trees
- Fast Lookup : Hash-Tables
- The travelling Salesman: Dynamic Programming, Minimum Spanning Tree, Simulated Annealing

Extremely large number of potential solutionsPractical applicability

Data Structures

- A data structure is a particular way of organizing data in a computer so that they can be used efficiently (in the algorithms operating on them).
- Programs = algorithms + data structures.



Efficiency

Illusion:

- If computers were infinitely fast and had an infinite amount of memory ...
- ... then we would still need the theory of algorithms (only) for statements about correctness (and termination).

Efficiency

Illusion:

- If computers were infinitely fast and had an infinite amount of memory ...
- ... then we would still need the theory of algorithms (only) for statements about correctness (and termination).

Reality: resources are bounded and not free:

- Computing time → Efficiency
- $\blacksquare \ Storage \ space \rightarrow Efficiency$

Actually, this course is nearly only about efficiency.

2. Efficiency of algorithms

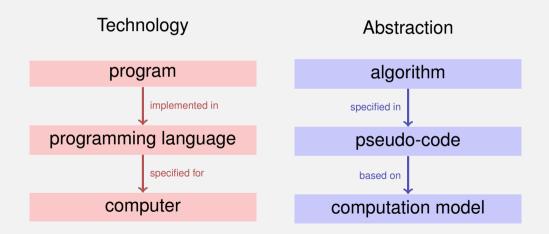
Efficiency of Algorithms, Random Access Machine Model, Function Growth, Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 | Ottman/Widmayer, Kap. 1.1]

Efficiency of Algorithms

Goals

- Quantify the runtime behavior of an algorithm independent of the machine.
- Compare efficiency of algorithms.
- Understand dependece on the input size.

Programs and Algorithms



Random Access Machine (RAM)

Execution model: instructions are executed one after the other (on one processor core).

- Execution model: instructions are executed one after the other (on one processor core).
- Memory model: constant access time (big array)

- Execution model: instructions are executed one after the other (on one processor core).
- Memory model: constant access time (big array)
- Fundamental operations: computations (+,-,·,...) comparisons, assignment / copy on machine words (registers), flow control (jumps)

- Execution model: instructions are executed one after the other (on one processor core).
- Memory model: constant access time (big array)
- Fundamental operations: computations (+,-,·,...) comparisons, assignment / copy on machine words (registers), flow control (jumps)
- Unit cost model: fundamental operations provide a cost of 1.

- Execution model: instructions are executed one after the other (on one processor core).
- Memory model: constant access time (big array)
- Fundamental operations: computations (+,-,·,...) comparisons, assignment / copy on machine words (registers), flow control (jumps)
- Unit cost model: fundamental operations provide a cost of 1.
- Data types: fundamental types like size-limited integer or floating point number.

Pointer Machine Model

We assume

- Objects bounded in size can be dynamically allocated in constant time
- Fields (with word-size) of the objects can be accessed in constant time 1.

$$\texttt{top} \longrightarrow x_n \ \bullet \longrightarrow x_{n-1} \ \bullet \dashrightarrow x_1 \ \bullet \longrightarrow \texttt{null}$$

An exact running time of an algorithm can normally not be predicted even for small input data.

- We consider the asymptotic behavior of the algorithm.
- And ignore all constant factors.

Example

An operation with cost 20 is no worse than one with cost 1Linear growth with gradient 5 is as good as linear growth with gradient 1.

2.2 Function growth

 $\mathcal{O},\,\Theta,\,\Omega$ [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]

Use the asymptotic notation to specify the execution time of algorithms.

We write $\Theta(n^2)$ and mean that the algorithm behaves for large n like n^2 : when the problem size is doubled, the execution time multiplies by four.

More precise: asymptotic upper bound

provided: a function $g : \mathbb{N} \to \mathbb{R}$. Definition:¹

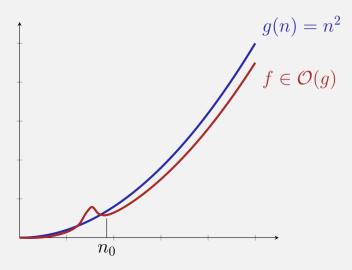
$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \\ \exists c > 0, \exists n_0 \in \mathbb{N} : \\ \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

Notation:

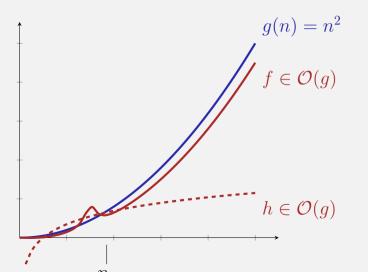
$$\mathcal{O}(g(n)) := \mathcal{O}(g(\cdot)) = \mathcal{O}(g).$$

¹Ausgesprochen: Set of all functions $f : \mathbb{N} \to \mathbb{R}$ that satisfy: there is some (real valued) c > 0 and some $n_0 \in \mathbb{N}$ such that $0 \le f(n) \le n \cdot g(n)$ for all $n \ge n_0$.

Graphic



Graphic



Examples

$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$

$$\begin{array}{ll} f(n) & f \in \mathcal{O}(?) \ \ \mbox{Example} \\ \hline 3n+4 \\ 2n \\ n^2+100n \\ n+\sqrt{n} \end{array}$$

Examples

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

$$\begin{array}{ll} f(n) & f \in \mathcal{O}(?) & \mathsf{Example} \\ \hline 3n+4 & \mathcal{O}(n) & c=4, n_0=4 \\ 2n & & \\ n^2+100n & & \\ n+\sqrt{n} & & \\ \end{array}$$

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

$$\begin{array}{ll} f(n) & f \in \mathcal{O}(?) & \mathsf{Example} \\ \hline 3n+4 & \mathcal{O}(n) & c=4, n_0=4 \\ 2n & \mathcal{O}(n) & c=2, n_0=0 \\ n^2+100n & & \\ n+\sqrt{n} & & \end{array}$$

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

$$\begin{array}{ll} f(n) & f \in \mathcal{O}(?) & \mathsf{Example} \\ \hline 3n+4 & \mathcal{O}(n) & c=4, n_0=4 \\ 2n & \mathcal{O}(n) & c=2, n_0=0 \\ n^2+100n & \mathcal{O}(n^2) & c=2, n_0=100 \\ n+\sqrt{n} & \end{array}$$

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

$$\begin{array}{ll} f(n) & f \in \mathcal{O}(?) & \mathsf{Example} \\ \hline 3n+4 & \mathcal{O}(n) & c=4, n_0=4 \\ 2n & \mathcal{O}(n) & c=2, n_0=0 \\ n^2+100n & \mathcal{O}(n^2) & c=2, n_0=100 \\ n+\sqrt{n} & \mathcal{O}(n) & c=2, n_0=1 \end{array}$$

Property

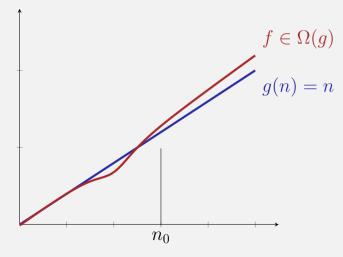
$f_1 \in \mathcal{O}(g), f_2 \in \mathcal{O}(g) \Rightarrow f_1 + f_2 \in \mathcal{O}(g)$

Converse: asymptotic lower bound

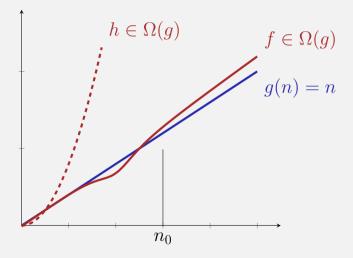
Given: a function $g : \mathbb{N} \to \mathbb{R}$. Definition:

$$\Omega(g) = \{ f : \mathbb{N} \to \mathbb{R} | \\ \exists c > 0, \exists n_0 \in \mathbb{N} : \\ \forall n \ge n_0 : 0 \le c \cdot g(n) \le f(n) \}$$

Example



Example



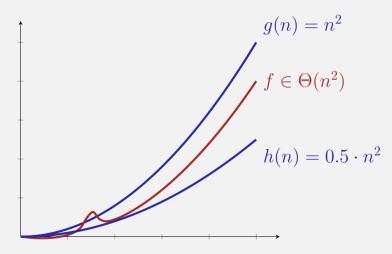
Asymptotic tight bound

Given: function $g : \mathbb{N} \to \mathbb{R}$. Definition:

$$\Theta(g) := \Omega(g) \cap \mathcal{O}(g).$$

Simple, closed form: exercise.

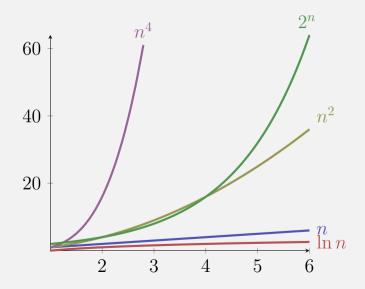
Example



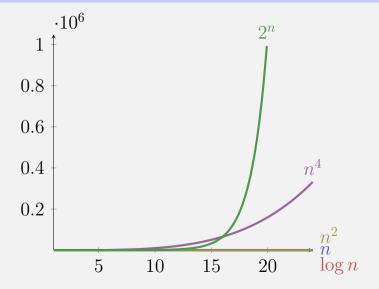
Notions of Growth

$(\mathbf{O}(\mathbf{z}))$		
$\mathcal{O}(1)$	bounded	array access
$\mathcal{O}(\log \log n)$	double logarithmic	interpolated binary sorted sort
$\mathcal{O}(\log n)$	logarithmic	binary sorted search
$\mathcal{O}(\sqrt{n})$	like the square root	naive prime number test
$\mathcal{O}(n)$	linear	unsorted naive search
$\mathcal{O}(n\log n)$	superlinear / loglinear	good sorting algorithms
$\mathcal{O}(n^2)$	quadratic	simple sort algorithms
$\mathcal{O}(n^c)$	polynomial	matrix multiply
$\mathcal{O}(2^n)$	exponential	Travelling Salesman Dynamic Programming
$\mathcal{O}(n!)$	factorial	Travelling Salesman naively

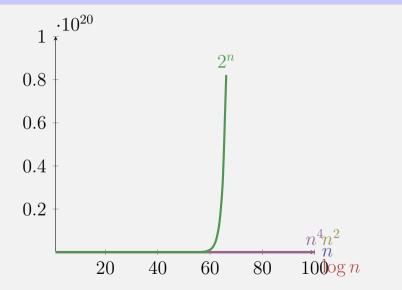
${\rm Small} \; n$



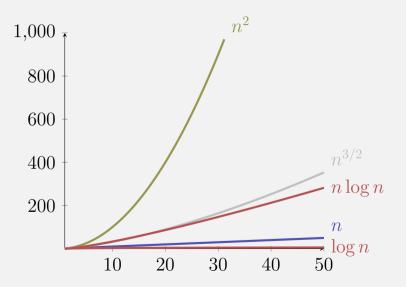
Larger n



"Large" n



Logarithms



problem size	1
$\log_2 n$	$1 \mu s$
n	$1 \mu s$
$n\log_2 n$	$1 \mu s$
n^2	$1\mu s$
2^n	$1 \mu s$

problem size	1	100	10000	10^{6}	10^{9}
$\log_2 n$	$1 \mu s$				
n	$1 \mu s$	$100 \mu s$	1/100s	1s	17 minutes
$n\log_2 n$	$1 \mu s$				
n^2	$1 \mu s$				
2^n	$1 \mu s$				

problem size	1	100	10000	10^{6}	10^{9}
$\log_2 n$	$1 \mu s$				
n	$1 \mu s$	$100 \mu s$	1/100s	1s	17 minutes
$n\log_2 n$	$1 \mu s$				
n^2	$1 \mu s$	1/100s	1.7 minutes	11.5 days	317 centuries
2^n	$1 \mu s$				

problem size	1	100	10000	10^{6}	10^{9}
$\log_2 n$	$1 \mu s$	$7 \mu s$	$13 \mu s$	$20 \mu s$	$30 \mu s$
n	$1 \mu s$	$100 \mu s$	1/100s	1s	17 minutes
$n\log_2 n$	$1 \mu s$				
n^2	$1 \mu s$	1/100s	1.7 minutes	$11.5~\mathrm{days}$	317 centuries
2^n	$1 \mu s$				

problem size	1	100	10000	10^{6}	10^{9}
$\log_2 n$	$1 \mu s$	$7 \mu s$	$13 \mu s$	$20 \mu s$	$30 \mu s$
n	$1 \mu s$	$100 \mu s$	1/100s	1s	17 minutes
$n\log_2 n$	$1 \mu s$	$700 \mu s$	$13/100 \mu s$	20s	8.5 hours
n^2	$1 \mu s$	1/100s	1.7 minutes	$11.5~\mathrm{days}$	317 centuries
2^n	$1 \mu s$				

problem size	1	100	10000	10^{6}	10^{9}
$\log_2 n$	$1 \mu s$	$7 \mu s$	$13 \mu s$	$20 \mu s$	$30 \mu s$
n	$1 \mu s$	$100 \mu s$	1/100s	1s	17 minutes
$n\log_2 n$	$1 \mu s$	$700 \mu s$	$13/100 \mu s$	20s	8.5 hours
n^2	$1 \mu s$	1/100s	1.7 minutes	11.5 days	317 centuries
2^n	$1 \mu s$	$10^{14} \text{ centuries}$	$pprox \infty$	$pprox \infty$	$pprox\infty$

About the Notation

Common casual notation

$$f = \mathcal{O}(g)$$

should be read as $f \in \mathcal{O}(g)$.

Clearly it holds that

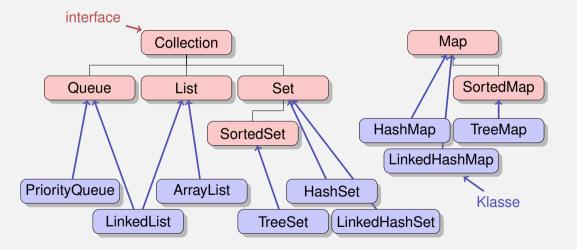
$$f_1 = \mathcal{O}(g), f_2 = \mathcal{O}(g) \not\Rightarrow f_1 = f_2!$$

Beispiel

$$n = \mathcal{O}(n^2), n^2 = \mathcal{O}(n^2)$$
 but naturally $n \neq n^2$.

We avoid this notation where it could lead to ambiguities.

Reminder: Java Collections / Maps

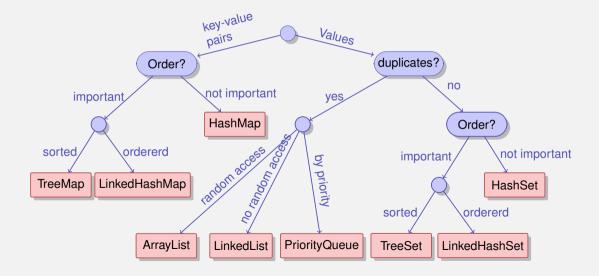


ArrayList versus LinkedList

run time measurements for 10000 operations (on [code] expert)

ArrayList	LinkedList
${f 469}\mu{ m s}$	$1787 \mu \mathrm{s}$
$37900 \mu { m s}$	${f 761}\mu{ m s}$
$1840 \mu s$	$2050 \mu \mathrm{s}$
${f 426}\mu{ m s}$	$110600 \mu s$
$31 \mathrm{ms}$	$301 \mathrm{ms}$
$38 \mathrm{ms}$	$141 \mathrm{ms}$
$228 \mathrm{ms}$	$1080 \mathrm{ms}$
$648 \mu s$	$757 \mu { m s}$
$58075 \mu \mathrm{s}$	$609\mu\mathrm{s}$

Reminder: Decision



Asymptotic Runtimes

With our new language $(\Omega, \mathcal{O}, \Theta)$, we can now state the behavior of the data structures and their algorithms more precisely

Asymptotic running times (Anticipation!)

Data structure	Random	Insert	Next	Insert	Search
	Access			After	
				Element	
ArrayList	$\Theta(1)$	$\Theta(1) A$	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$
LinkedList	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$
TreeSet	—	$\Theta(\log n)$	$\Theta(\log n)$	—	$\Theta(\log n)$
HashSet	_	$\Theta(1) P$	_	_	$\Theta(1) P$

A =amortized, P =expected, otherwise worst case