Computer Science II

Course at D-BAUG, ETH Zurich

Felix Friedrich & Hermann Lehner

SS 2019

1. Introduction

Algorithms and Data Structures, Correctness, a First Example

Goals of the course

- Understand the design and analysis of fundamental algorithms and data structures.
- Understand how an algorithmic problem is mapped to a sufficiently efficient computer program.

Contents

data structures / algorithms

The notion invariant, cost model, Landau notation algorithms design, induction

searching, selection and sorting

dictionaries: hashing and search trees, balanced trees

dynamic programming

fundamental graph algorithms, shortest paths, maximum flow

Software Engineering

Python Introduction

Python Datastructures

Algorithm

1.1 Algorithms

[Cormen et al, Kap. 1;Ottman/Widmayer, Kap. 1.1]

Algorithm: well defined computing procedure to compute *output* data from *input* data

2

example problem

Input: A sequence of n numbers (a_1, a_2, \ldots, a_n)

Output: Permutation $(a'_1, a'_2, \dots, a'_n)$ of the sequence $(a_i)_{1 \le i \le n}$, such that

 $a_1' \le a_2' \le \dots \le a_n'$

Possible input

 $(1,7,3), (15,13,12,-0.5), (1) \dots$

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the problem instance. Often there are "good" and "bad" instances.

Examples for algorithmic problems

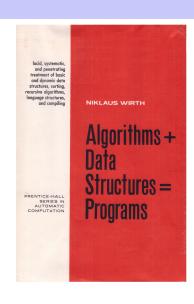
- Tables and statistis: sorting, selection and searching
- routing: shortest path algorithm, heap data structure
- DNA matching: Dynamic Programming
- evaluation order: Topological Sorting
- autocomletion and spell-checking: Dictionaries / Trees
- Fast Lookup : Hash-Tables
- The travelling Salesman: Dynamic Programming, Minimum Spanning Tree, Simulated Annealing

Characteristics

- Extremely large number of potential solutions
- Practical applicability

Data Structures

- A data structure is a particular way of organizing data in a computer so that they can be used efficiently (in the algorithms operating on them).
- Programs = algorithms + data structures.



Efficiency

Illusion:

- If computers were infinitely fast and had an infinite amount of memory ...
- ... then we would still need the theory of algorithms (only) for statements about correctness (and termination).

Reality: resources are bounded and not free:

- Computing time → Efficiency
- Storage space → Efficiency

Actually, this course is nearly only about efficiency.

2. Efficiency of algorithms

Efficiency of Algorithms, Random Access Machine Model, Function Growth, Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 | Ottman/Widmayer, Kap. 1.1]

27

Efficiency of Algorithms

Programs and Algorithms

Goals

- Quantify the runtime behavior of an algorithm independent of the machine.
- Compare efficiency of algorithms.
- Understand dependece on the input size.

Technology Abstraction program implemented in programming language specified for computer Abstraction algorithm specified in pseudo-code based on computer computation model

Technology Model

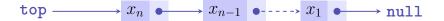
Random Access Machine (RAM)

- Execution model: instructions are executed one after the other (on one processor core).
- Memory model: constant access time (big array)
- Fundamental operations: computations (+,-,·,...) comparisons, assignment / copy on machine words (registers), flow control (jumps)
- Unit cost model: fundamental operations provide a cost of 1.
- Data types: fundamental types like size-limited integer or floating point number.

Pointer Machine Model

We assume

- Objects bounded in size can be dynamically allocated in constant time
- Fields (with word-size) of the objects can be accessed in constant time 1.



Asymptotic behavior

An exact running time of an algorithm can normally not be predicted even for small input data.

- We consider the asymptotic behavior of the algorithm.
- And ignore all constant factors.

Example

An operation with cost 20 is no worse than one with cost 1 Linear growth with gradient 5 is as good as linear growth with gradient 1.

Algorithms, Programs and Execution Time

Program: concrete implementation of an algorithm.

Execution time of the program: measurable value on a concrete machine. Can be bounded from above and below.

Beispiel

3GHz computer. Maximal number of operations per cycle (e.g. 8). \Rightarrow lower bound. A single operations does never take longer than a day \Rightarrow upper bound.

From the perspective of the *asymptotic behavior* of the program, the bounds are unimportant.

Superficially

Use the asymptotic notation to specify the execution time of algorithms.

We write $\Theta(n^2)$ and mean that the algorithm behaves for large n like n^2 : when the problem size is doubled, the execution time multiplies by four.

2.2 Function growth

 \mathcal{O} , Θ , Ω [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]

More precise: asymptotic upper bound

provided: a function $g: \mathbb{N} \to \mathbb{R}$.

Definition:1

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} |$$

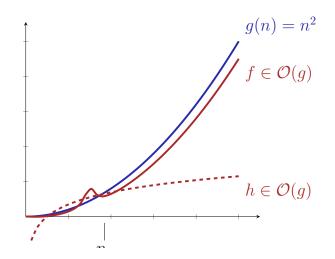
$$\exists c > 0, \exists n_0 \in \mathbb{N} :$$

$$\forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$$

Notation:

$$\mathcal{O}(g(n)) := \mathcal{O}(g(\cdot)) = \mathcal{O}(g).$$

Graphic



Examples

$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} | \exists c > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$

$$\begin{array}{cccc} f(n) & f \in \mathcal{O}(?) & \mathsf{Example} \\ \hline 3n+4 & \mathcal{O}(n) & c=4, n_0=4 \\ 2n & \mathcal{O}(n) & c=2, n_0=0 \\ n^2+100n & \mathcal{O}(n^2) & c=2, n_0=100 \\ n+\sqrt{n} & \mathcal{O}(n) & c=2, n_0=1 \end{array}$$

Property

$$f_1 \in \mathcal{O}(g), f_2 \in \mathcal{O}(g) \Rightarrow f_1 + f_2 \in \mathcal{O}(g)$$

41

¹Ausgesprochen: Set of all functions $f:\mathbb{N}\to\mathbb{R}$ that satisfy: there is some (real valued) c>0 and some $n_0\in\mathbb{N}$ such that $0\leq f(n)\leq n\cdot g(n)$ for all $n\geq n_0$.

Converse: asymptotic lower bound

Example

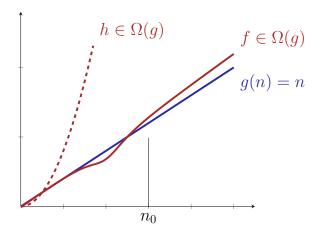
Given: a function $g: \mathbb{N} \to \mathbb{R}$.

Definition:

$$\Omega(g) = \{ f : \mathbb{N} \to \mathbb{R} |$$

$$\exists c > 0, \exists n_0 \in \mathbb{N} :$$

$$\forall n \ge n_0 : 0 \le c \cdot g(n) \le f(n) \}$$



12

Asymptotic tight bound

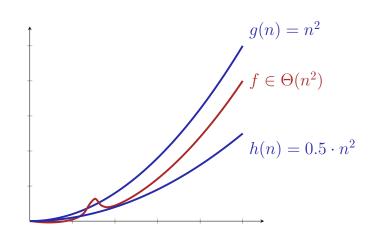
Example

Given: function $g: \mathbb{N} \to \mathbb{R}$.

Definition:

$$\Theta(g) := \Omega(g) \cap \mathcal{O}(g).$$

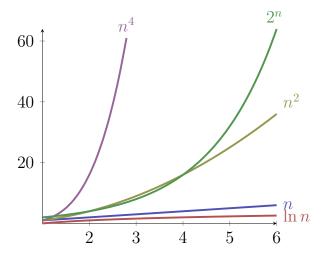
Simple, closed form: exercise.



Notions of Growth

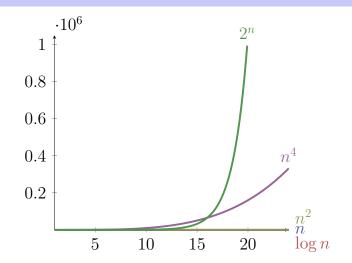
$\mathcal{O}(1)$	bounded	array access
$\mathcal{O}(\log \log n)$	double logarithmic	interpolated binary sorted sort
$\mathcal{O}(\log n)$	logarithmic	binary sorted search
$\mathcal{O}(\sqrt{n})$	like the square root	naive prime number test
$\mathcal{O}(n)$	linear	unsorted naive search
$\mathcal{O}(n\log n)$	superlinear / loglinear	good sorting algorithms
$\mathcal{O}(n^2)$	quadratic	simple sort algorithms
$\mathcal{O}(n^c)$	polynomial	matrix multiply
$\mathcal{O}(2^n)$	exponential	Travelling Salesman Dynamic Programming
$\mathcal{O}(n!)$	factorial	Travelling Salesman naively

$\mathbf{Small}\ n$

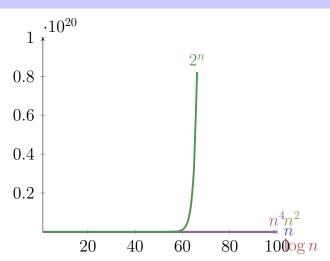


46

$\mathbf{Larger}\ n$

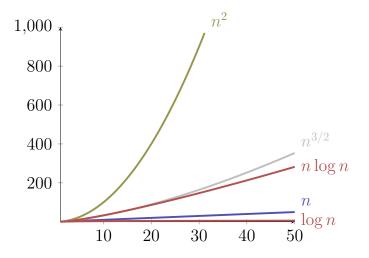


"Large" n



48

Logarithms



Time Consumption

Assumption 1 Operation = $1\mu s$.

problem size	1	100	10000	10^{6}	10^{9}
$\log_2 n$	$1\mu s$	$7\mu s$	$13\mu s$	$20\mu s$	$30\mu s$
n	$1\mu s$	$100 \mu s$	1/100s	1s	17 minutes
$n\log_2 n$	$1\mu s$	$700 \mu s$	$13/100 \mu s$	20s	$8.5~\mathrm{hours}$
n^2	$1\mu s$	1/100s	1.7 minutes	$11.5~\mathrm{days}$	317 centuries
2^n	$1\mu s$	$10^{14} \ \mathrm{centuries}$	$pprox \infty$	$pprox \infty$	$pprox \infty$

Useful Tool

Theorem

Let $f,g:\mathbb{N}\to\mathbb{R}^+$ be two functions, then it holds that

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f \in \mathcal{O}(g), \, \mathcal{O}(f) \subsetneq \mathcal{O}(g).$$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = C > 0$$
 (C constant) $\Rightarrow f \in \Theta(g)$.

$$\exists \frac{f(n)}{g(n)} \underset{n \to \infty}{\to} \infty \Rightarrow g \in \mathcal{O}(f), \mathcal{O}(g) \subsetneq \mathcal{O}(f).$$

About the Notation

Common casual notation

$$f = \mathcal{O}(g)$$

should be read as $f \in \mathcal{O}(g)$.

Clearly it holds that

$$f_1 = \mathcal{O}(g), f_2 = \mathcal{O}(g) \not\Rightarrow f_1 = f_2!$$

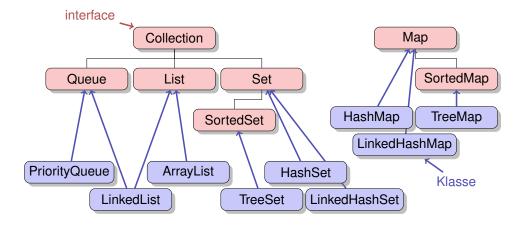
Beispiel

50

$$n = \mathcal{O}(n^2), n^2 = \mathcal{O}(n^2)$$
 but naturally $n \neq n^2$.

We avoid this notation where it could lead to ambiguities.

Reminder: Java Collections / Maps

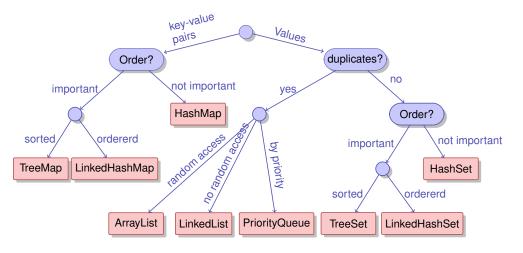


ArrayList versus LinkedList

run time measurements for 10000 operations (on [code] expert)

ArrayList	LinkedList
$469\mu\mathrm{s}$	$1787\mu s$
$37900 \mu s$	$761 \mu s$
$1840 \mu s$	$2050\mu s$
${f 426} \mu { m s}$	$110600 \mu s$
$31 \mathrm{ms}$	$301 \mathrm{ms}$
$38 \mathrm{ms}$	141ms
$228 \mathrm{ms}$	$1080 \mathrm{ms}$
$648 \mu s$	$757\mu\mathrm{s}$
$58075 \mu \mathrm{s}$	$609\mu\mathrm{s}$

Reminder: Decision



Asymptotic Runtimes

54

With our new language $(\Omega, \mathcal{O}, \Theta)$, we can now state the behavior of the data structures and their algorithms more precisely

Asymptotic running times (Anticipation!)

Data structure	Random	Insert	Next	Insert	Search
	Access			After	
				Element	
ArrayList	$\Theta(1)$	$\Theta(1) A$	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$
LinkedList	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$
TreeSet	_	$\Theta(\log n)$	$\Theta(\log n)$	_	$\Theta(\log n)$
HashSet	_	$\Theta(1) P$	_	_	$\Theta(1) P$

A = amortized, P = expected, otherwise worst case