Informatik Il

Ubung 9

FS 2019

Program Today

Repetition theory
m Editing Distance

In-Class Exercise
m Implement on CodeExpert

1. Repetition theory

Dynamic Programming: Idea

m Divide a complex problem into a reasonable number of
sub-problems

m The solution of the sub-problems will be used to solve the more
complex problem

m |dentical problems will be computed only once

Dynamic Programming Consequence

Identical problems will be computed only once
= Results are saved

Arbeitsspeicher

RN
a\(\s
5pe® a%)’\'\0“
we ¥ 29° 0005\)(“
192.- O‘\J

HyperX Fury (2x, 8GB,
DDR4-2400, DIMM 288) me

ER Ry 6

Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by
utilizing the solutions of sub-problems. The problem provides
optimal substructure.

Divide-And-Conquer algorithms (such as Mergesort):
sub-problems are independent; their solutions are required only
once in the algorithm.

DP: sub-problems are dependent. The problem is said to have

overlapping sub-problems that are required multiple-times in the
algorithm.

In order to avoid redundant computations, results are tabulated.
For sub-problems there must not be any circular dependencies.

Minimal Editing Distance

Editing distance of two sequences A, = (a4, ..., a,),
By = (b1,...,bp).

Editing operations:

| of a character

m Deletion of a character

m Replacement of a character

Question: how many editing operations at least required in order to

transform string A into string B.
TIGER ZIGER ZIEGER ZIEGE

Minimal Editing Distance

Wanted: cheapest character-wise transformation A,, — B,, with
costs

operation Levenshtein LCS! general
Insert c 1 1 ins(c)
Delete c 1 1 del(c)
Replace c — ¢ | 1(c#) |oo-1(c#) | repl(c,c)
Beispiel
TI G E R TI _ G ER T—Z +E -R
Z | E G E Z | E GE _ Z—T -E +R

Wie findet man den DP Algorithms

m Exact formulation of the wanted solution

Define sub-problems (and compute the cardinality)

Guess / Enumerate (and determine the running time for
guessing)

Recursion: relate sub-problems

Memoize / Tabularize. Determine the dependencies of the
sub-problems

Solve the problem
Running time = #sub-problems x time/sub-problem

DP

@ E(n,m) = mimimum number edit operations (ED cost)

ai.n —7 bl...m
Subproblems E(i, j) = ED von a;_;. by__;. #SP =n-m
Guess CostsO(1)

ma ; — a1 -1 (delete)
W ap,; — al‘..ibj (insert)
B a;; — a1, b; (replace)

Rekursion
del(a;) + E(i — 1,7),
E(i,j) = min q ins(b;) + E(i,j — 1),
repl(a;, b;) + E(i — 1,5 — 1)

DP

Dependencies

= Computation from left top to bottom right. Row- or
column-wise.

Solution in E(n, m)

Example (Levenshtein Distance)

Eli,j] « min {E[i—1,j]+1, E[i, j—1]+1, E[i—1,j—1]+1(a; # b;) }

O z 1 E G E
P10 1 2 3 4 5
T|1 1 2 3 4 5
12 2 1 2 3 4
Gl3 3 2 2 2 3
E(4 4 3 2 3 2
Ri5 54 3 3 3

Editing steps: from bottom right to top left, following the recursion.

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table:

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
m Computation of an entry:

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?

m Calculation order:

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?

m Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?

m Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?

m Extracting the solution:

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?

m Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?

m Extracting the solution: How can the final solution be
extracted once the table has been filled?

Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?

m Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?

m Extracting the solution: How can the final solution be
extracted once the table has been filled?

Bottom-Up DP algorithm ED

Dimension of the table? Semantics?

Bottom-Up DP algorithm ED

Dimension of the table? Semantics?

Table E[0, ..., n][0,...,m]. E[i,j]: minimal edit distance of the strings
(Gl, ce ,ai) and (bl, e ,bj)

Bottom-Up DP algorithm ED

Dimension of the table? Semantics?

Table E[0, ..., n][0,...,m]. E[i,j]: minimal edit distance of the strings
(Gl, ce ,ai) and (bl, e ,bj)

V.

Computation of an entry

Bottom-Up DP algorithm ED

Dimension of the table? Semantics?

Table E[0, ..., n][0,...,m]. E[i,j]: minimal edit distance of the strings
(al, 'y ,CL,L'> and (bla 50 0 ,bj)

V.

Computation of an entry

E[0,] + i Y0 < i <m, E[j,0] < i V0 < j < n.
otherwise via Eli, j| =
min{del(a;) + E(i — 1, j),ins(b;) + E(i, j — 1),repl(a;, b;) + E(i — 1,5 — 1)}

4

Bottom-Up DP algorithm ED

Computation order

Bottom-Up DP algorithm ED

Computation order
Rows increasing and within columns increasing (or the other way round).

Bottom-Up DP algorithm ED

Computation order
Rows increasing and within columns increasing (or the other way round).

Reconstruct solution?

Bottom-Up DP algorithm ED

Computation order
Rows increasing and within columns increasing (or the other way round).

Reconstruct solution?

Start with j = m, i = n. If Ei, j] = repl(a;,b;) + E(i — 1, j — 1) then output
a; — b; and continue with (j,4) < (j — 1,7 — 1); otherwise, if

Eli, j] = del(a;) + E(i — 1, j) output del(a;) and continue with j < j — 1

otherwise, if E[i, j] = ins(b;) + E(i,j — 1), continue with i <— ¢ — 1 .

Terminate for i = 0 and j = 0.

Longest ascending Sequence in matrix

Given n x m matrix A:

9 |27 142 |41 |48
3539, 8 | 3|5
12149 2 |38 | 4
15147129 |28 | 6
191 1 (25|33 |10

Longest ascending Sequence in matrix

Given n x m matrix A:

9 |27 42 41 |48
3539, 8| 3|5
12149 | 2 |38 4
15147129 28| 6
191 1 25|33 |10

Wanted longest ascending sequence:

4,6, 28,29, 47, 49

Definition of the DP table

m What are the dimensions of the table?

Definition of the DP table

m What are the dimensions of the table?

BENXM

Definition of the DP table

m What are the dimensions of the table?

mn X m(x2)

Definition of the DP table

m What are the dimensions of the table?
mE N X m(><2)

m What is the meaning of each entry?

Definition of the DP table

m What are the dimensions of the table?
mE N X m(><2)
m What is the meaning of each entry?

m In T'[z][y] is the length of the longest ascending sequence
that ends in Alz]|[y]

m In S[z][y] are the coordinates of the predecessor in
ascending sequence (if exists)

Computation of an entry

m How can an entry be computed from the values of other
entries? Which entries do not depend on others?

Computation of an entry

m How can an entry be computed from the values of other
entries? Which entries do not depend on others?

m Consider neighbors with smaller entry in A

Computation of an entry

m How can an entry be computed from the values of other
entries? Which entries do not depend on others?

m Consider neighbors with smaller entry in A
m From the smaller entries choose entry with the largest
entry in T

Computation of an entry

m How can an entry be computed from the values of other
entries? Which entries do not depend on others?

m Consider neighbors with smaller entry in A

m From the smaller entries choose entry with the largest
entry in T

m Update 7" and S. (S gets coordinate from selected
neighbor, T" gets value from selected neighbor increased
by one)

Computation of an entry

m How can an entry be computed from the values of other
entries? Which entries do not depend on others?

m Consider neighbors with smaller entry in A

m From the smaller entries choose entry with the largest
entry in T

m Update 7" and S. (S gets coordinate from selected
neighbor, T" gets value from selected neighbor increased
by one)

Calculation order

m In which order can entries be computed so that values needed
for each entry have been determined in previous steps?

Calculation order

m In which order can entries be computed so that values needed
for each entry have been determined in previous steps?

m Bottom-Up: Start with
smallest element in A and
so on. (Means that one has
to sort A)

Calculation order

m In which order can entries be computed so that values needed
for each entry have been determined in previous steps?

m Bottom-Up: Start with m Recursively: Arbitrary order,
smallest element in A and if entry is already computed
so on. (Means that one has skip it otherwise compute for

to sort A) smaller neighbor recursively.

Extracting the solution

m How can the final solution be exiracted once the table has been
filled?

Extracting the solution

m How can the final solution be exiracted once the table has been
filled?

m Consider all entries to find one with a longest sequence.
From there, we can reconstruct the solution by following
the corresponding predecessors.

Program

Implement a DP solution in the prepared CodeExpert program.

Questions / Suggestions?

	Repetition theory
	Editing Distance

	In-Class Exercise
	Implement on CodeExpert

