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Übung 9

FS 2019

1



Program Today

1 Repetition theory

Editing Distance

2 In-Class Exercise

Implement on CodeExpert

2



1. Repetition theory

3



Dynamic Programming: Idea

Divide a complex problem into a reasonable number of
sub-problems
The solution of the sub-problems will be used to solve the more
complex problem
Identical problems will be computed only once
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Dynamic Programming Consequence

Identical problems will be computed only once

⇒ Results are saved

We trade spee against

memory consumption
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Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by
utilizing the solutions of sub-problems. The problem provides
optimal substructure.
Divide-And-Conquer algorithms (such as Mergesort):
sub-problems are independent; their solutions are required only
once in the algorithm.
DP: sub-problems are dependent. The problem is said to have
overlapping sub-problems that are required multiple-times in the
algorithm.
In order to avoid redundant computations, results are tabulated.
For sub-problems there must not be any circular dependencies.
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Minimal Editing Distance

Editing distance of two sequences An = (a1, . . . , an),
Bm = (b1, . . . , bm).

Editing operations:

Insertion of a character
Deletion of a character
Replacement of a character

Question: how many editing operations at least required in order to
transform string A into string B.

TIGER ZIGER ZIEGER ZIEGE
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Minimal Editing Distance

Wanted: cheapest character-wise transformation An → Bm with
costs

operation Levenshtein LCS1 general
Insert c 1 1 ins(c)
Delete c 1 1 del(c)
Replace c→ c′ 1(c 6= c′) ∞ · 1(c 6= c′) repl(c, c′)

Beispiel
T I G E R
Z I E G E

T I _ G E R
Z I E G E _

T→Z +E -R
Z→T -E +R

1Longest common subsequence – A special case of an editing problem
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Wie findet man den DP Algorithms

0 Exact formulation of the wanted solution
1 Define sub-problems (and compute the cardinality)
2 Guess / Enumerate (and determine the running time for

guessing)
3 Recursion: relate sub-problems
4 Memoize / Tabularize. Determine the dependencies of the

sub-problems
5 Solve the problem

Running time = #sub-problems × time/sub-problem
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DP
0 E(n,m) = mimimum number edit operations (ED cost)
a1...n → b1...m

1 Subproblems E(i, j) = ED von a1...i. b1...j. #SP = n ·m
2 Guess CostsΘ(1)

a1..i → a1...i−1 (delete)
a1..i → a1...ibj (insert)
a1..i → a1...i1bj (replace)

3 Rekursion

E(i, j) = min


del(ai) + E(i− 1, j),

ins(bj) + E(i, j − 1),

repl(ai, bj) + E(i− 1, j − 1)
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DP

4 Dependencies

⇒ Computation from left top to bottom right. Row- or
column-wise.

5 Solution in E(n,m)
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Example (Levenshtein Distance)

E[i, j]← min
{
E[i−1, j]+1, E[i, j−1]+1, E[i−1, j−1]+1(ai 6= bj)

}
∅ Z I E G E

∅ 0 1 2 3 4 5
T 1 1 2 3 4 5
I 2 2 1 2 3 4
G 3 3 2 2 2 3
E 4 4 3 2 3 2
R 5 5 4 3 3 3

Editing steps: from bottom right to top left, following the recursion.
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Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?
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Bottom-Up DP algorithm ED

1

Dimension of the table? Semantics?

Table E[0, . . . , n][0, . . . ,m]. E[i, j]: minimal edit distance of the strings
(a1, . . . , ai) and (b1, . . . , bj)

2

Computation of an entry

E[0, i]← i ∀0 ≤ i ≤ m, E[j, 0]← i ∀0 ≤ j ≤ n.
otherwise via E[i, j] =
min{del(ai) + E(i− 1, j), ins(bj) + E(i, j − 1), repl(ai, bj) + E(i− 1, j − 1)}
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Bottom-Up DP algorithm ED

3
Computation order

Rows increasing and within columns increasing (or the other way round).

4

Reconstruct solution?

Start with j = m, i = n. If E[i, j] = repl(ai, bj) + E(i− 1, j − 1) then output
ai → bj and continue with (j, i)← (j − 1, i− 1); otherwise, if
E[i, j] = del(ai) + E(i− 1, j) output del(ai) and continue with j ← j − 1
otherwise, if E[i, j] = ins(bj) + E(i, j − 1), continue with i← i− 1 .
Terminate for i = 0 and j = 0.
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Longest ascending Sequence in matrix

Given n×m matrix A:

9 27 42 41 48
35 39 8 3 5
12 49 2 38 4
15 47 29 28 6
19 1 25 33 10
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Longest ascending Sequence in matrix

Given n×m matrix A:

9 27 42 41 48
35 39 8 3 5
12 49 2 38 4
15 47 29 28 6
19 1 25 33 10

Wanted longest ascending sequence:

4, 6, 28, 29, 47, 49
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Definition of the DP table

What are the dimensions of the table?

n×m(×2)

What is the meaning of each entry?

In T [x][y] is the length of the longest ascending sequence
that ends in A[x][y]
In S[x][y] are the coordinates of the predecessor in
ascending sequence (if exists)
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Computation of an entry

How can an entry be computed from the values of other
entries? Which entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest
entry in T
Update T and S. (S gets coordinate from selected
neighbor, T gets value from selected neighbor increased
by one)
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Calculation order

In which order can entries be computed so that values needed
for each entry have been determined in previous steps?

Bottom-Up: Start with
smallest element in A and
so on. (Means that one has
to sort A)

Recursively: Arbitrary order,
if entry is already computed
skip it otherwise compute for
smaller neighbor recursively.
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Extracting the solution

How can the final solution be extracted once the table has been
filled?

Consider all entries to find one with a longest sequence.
From there, we can reconstruct the solution by following
the corresponding predecessors.
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Program

Implement a DP solution in the prepared CodeExpert program.
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Questions / Suggestions?
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