
Informatik II

Übung 9

FS 2019

1



Program Today

1 Repetition theory

Editing Distance

2 In-Class Exercise

Implement on CodeExpert

2



1. Repetition theory

3



Dynamic Programming: Idea

Divide a complex problem into a reasonable number of
sub-problems
The solution of the sub-problems will be used to solve the more
complex problem
Identical problems will be computed only once

4



Dynamic Programming Consequence

Identical problems will be computed only once

⇒ Results are saved

We trade spee against

memory consumption

5



Dynamic Programming = Divide-And-Conquer ?

In both cases the original problem can be solved (more easily) by
utilizing the solutions of sub-problems. The problem provides
optimal substructure.
Divide-And-Conquer algorithms (such as Mergesort):
sub-problems are independent; their solutions are required only
once in the algorithm.
DP: sub-problems are dependent. The problem is said to have
overlapping sub-problems that are required multiple-times in the
algorithm.
In order to avoid redundant computations, results are tabulated.
For sub-problems there must not be any circular dependencies.

6



Minimal Editing Distance

Editing distance of two sequences An = (a1, . . . , an),
Bm = (b1, . . . , bm).

Editing operations:

Insertion of a character
Deletion of a character
Replacement of a character

Question: how many editing operations at least required in order to
transform string A into string B.

TIGER ZIGER ZIEGER ZIEGE

7



Minimal Editing Distance

Wanted: cheapest character-wise transformation An → Bm with
costs

operation Levenshtein LCS1 general
Insert c 1 1 ins(c)
Delete c 1 1 del(c)
Replace c→ c′ 1(c 6= c′) ∞ · 1(c 6= c′) repl(c, c′)

Beispiel
T I G E R
Z I E G E

T I _ G E R
Z I E G E _

T→Z +E -R
Z→T -E +R

1Longest common subsequence – A special case of an editing problem
8



Wie findet man den DP Algorithms

0 Exact formulation of the wanted solution
1 Define sub-problems (and compute the cardinality)
2 Guess / Enumerate (and determine the running time for

guessing)
3 Recursion: relate sub-problems
4 Memoize / Tabularize. Determine the dependencies of the

sub-problems
5 Solve the problem

Running time = #sub-problems × time/sub-problem

9



DP
0 E(n,m) = mimimum number edit operations (ED cost)
a1...n → b1...m

1 Subproblems E(i, j) = ED von a1...i. b1...j. #SP = n ·m
2 Guess CostsΘ(1)

a1..i → a1...i−1 (delete)
a1..i → a1...ibj (insert)
a1..i → a1...i1bj (replace)

3 Rekursion

E(i, j) = min


del(ai) + E(i− 1, j),

ins(bj) + E(i, j − 1),

repl(ai, bj) + E(i− 1, j − 1)
10



DP

4 Dependencies

⇒ Computation from left top to bottom right. Row- or
column-wise.

5 Solution in E(n,m)

11



Example (Levenshtein Distance)

E[i, j]← min
{
E[i−1, j]+1, E[i, j−1]+1, E[i−1, j−1]+1(ai 6= bj)

}
∅ Z I E G E

∅ 0 1 2 3 4 5
T 1 1 2 3 4 5
I 2 2 1 2 3 4
G 3 3 2 2 2 3
E 4 4 3 2 3 2
R 5 5 4 3 3 3

Editing steps: from bottom right to top left, following the recursion.
12



Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

13



Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table:

What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

13



Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

13



Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry:

How can an entry be computed
from the values of other entries? Which entries do not depend
on others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

13



Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?

Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

13



Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?
Calculation order:

In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

13



Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?

Extracting the solution: How can the final solution be
extracted once the table has been filled?

13



Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution:

How can the final solution be
extracted once the table has been filled?

13



Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

13



Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend
on others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

13



Bottom-Up DP algorithm ED

1

Dimension of the table? Semantics?

Table E[0, . . . , n][0, . . . ,m]. E[i, j]: minimal edit distance of the strings
(a1, . . . , ai) and (b1, . . . , bj)

2

Computation of an entry

E[0, i]← i ∀0 ≤ i ≤ m, E[j, 0]← i ∀0 ≤ j ≤ n.
otherwise via E[i, j] =
min{del(ai) + E(i− 1, j), ins(bj) + E(i, j − 1), repl(ai, bj) + E(i− 1, j − 1)}

14



Bottom-Up DP algorithm ED

1

Dimension of the table? Semantics?
Table E[0, . . . , n][0, . . . ,m]. E[i, j]: minimal edit distance of the strings
(a1, . . . , ai) and (b1, . . . , bj)

2

Computation of an entry

E[0, i]← i ∀0 ≤ i ≤ m, E[j, 0]← i ∀0 ≤ j ≤ n.
otherwise via E[i, j] =
min{del(ai) + E(i− 1, j), ins(bj) + E(i, j − 1), repl(ai, bj) + E(i− 1, j − 1)}

14



Bottom-Up DP algorithm ED

1

Dimension of the table? Semantics?
Table E[0, . . . , n][0, . . . ,m]. E[i, j]: minimal edit distance of the strings
(a1, . . . , ai) and (b1, . . . , bj)

2

Computation of an entry

E[0, i]← i ∀0 ≤ i ≤ m, E[j, 0]← i ∀0 ≤ j ≤ n.
otherwise via E[i, j] =
min{del(ai) + E(i− 1, j), ins(bj) + E(i, j − 1), repl(ai, bj) + E(i− 1, j − 1)}

14



Bottom-Up DP algorithm ED

1

Dimension of the table? Semantics?
Table E[0, . . . , n][0, . . . ,m]. E[i, j]: minimal edit distance of the strings
(a1, . . . , ai) and (b1, . . . , bj)

2

Computation of an entry

E[0, i]← i ∀0 ≤ i ≤ m, E[j, 0]← i ∀0 ≤ j ≤ n.
otherwise via E[i, j] =
min{del(ai) + E(i− 1, j), ins(bj) + E(i, j − 1), repl(ai, bj) + E(i− 1, j − 1)}

14



Bottom-Up DP algorithm ED

3
Computation order

Rows increasing and within columns increasing (or the other way round).

4

Reconstruct solution?

Start with j = m, i = n. If E[i, j] = repl(ai, bj) + E(i− 1, j − 1) then output
ai → bj and continue with (j, i)← (j − 1, i− 1); otherwise, if
E[i, j] = del(ai) + E(i− 1, j) output del(ai) and continue with j ← j − 1
otherwise, if E[i, j] = ins(bj) + E(i, j − 1), continue with i← i− 1 .
Terminate for i = 0 and j = 0.

15



Bottom-Up DP algorithm ED

3
Computation order
Rows increasing and within columns increasing (or the other way round).

4

Reconstruct solution?

Start with j = m, i = n. If E[i, j] = repl(ai, bj) + E(i− 1, j − 1) then output
ai → bj and continue with (j, i)← (j − 1, i− 1); otherwise, if
E[i, j] = del(ai) + E(i− 1, j) output del(ai) and continue with j ← j − 1
otherwise, if E[i, j] = ins(bj) + E(i, j − 1), continue with i← i− 1 .
Terminate for i = 0 and j = 0.

15



Bottom-Up DP algorithm ED

3
Computation order
Rows increasing and within columns increasing (or the other way round).

4

Reconstruct solution?

Start with j = m, i = n. If E[i, j] = repl(ai, bj) + E(i− 1, j − 1) then output
ai → bj and continue with (j, i)← (j − 1, i− 1); otherwise, if
E[i, j] = del(ai) + E(i− 1, j) output del(ai) and continue with j ← j − 1
otherwise, if E[i, j] = ins(bj) + E(i, j − 1), continue with i← i− 1 .
Terminate for i = 0 and j = 0.

15



Bottom-Up DP algorithm ED

3
Computation order
Rows increasing and within columns increasing (or the other way round).

4

Reconstruct solution?
Start with j = m, i = n. If E[i, j] = repl(ai, bj) + E(i− 1, j − 1) then output
ai → bj and continue with (j, i)← (j − 1, i− 1); otherwise, if
E[i, j] = del(ai) + E(i− 1, j) output del(ai) and continue with j ← j − 1
otherwise, if E[i, j] = ins(bj) + E(i, j − 1), continue with i← i− 1 .
Terminate for i = 0 and j = 0.

15



Longest ascending Sequence in matrix

Given n×m matrix A:

9 27 42 41 48
35 39 8 3 5
12 49 2 38 4
15 47 29 28 6
19 1 25 33 10

16



Longest ascending Sequence in matrix

Given n×m matrix A:

9 27 42 41 48
35 39 8 3 5
12 49 2 38 4
15 47 29 28 6
19 1 25 33 10

Wanted longest ascending sequence:

4, 6, 28, 29, 47, 49

16



Definition of the DP table

What are the dimensions of the table?

n×m(×2)

What is the meaning of each entry?

In T [x][y] is the length of the longest ascending sequence
that ends in A[x][y]
In S[x][y] are the coordinates of the predecessor in
ascending sequence (if exists)

17



Definition of the DP table

What are the dimensions of the table?

n×m

(×2)

What is the meaning of each entry?

In T [x][y] is the length of the longest ascending sequence
that ends in A[x][y]
In S[x][y] are the coordinates of the predecessor in
ascending sequence (if exists)

17



Definition of the DP table

What are the dimensions of the table?

n×m(×2)

What is the meaning of each entry?

In T [x][y] is the length of the longest ascending sequence
that ends in A[x][y]
In S[x][y] are the coordinates of the predecessor in
ascending sequence (if exists)

17



Definition of the DP table

What are the dimensions of the table?

n×m(×2)

What is the meaning of each entry?

In T [x][y] is the length of the longest ascending sequence
that ends in A[x][y]
In S[x][y] are the coordinates of the predecessor in
ascending sequence (if exists)

17



Definition of the DP table

What are the dimensions of the table?

n×m(×2)

What is the meaning of each entry?

In T [x][y] is the length of the longest ascending sequence
that ends in A[x][y]
In S[x][y] are the coordinates of the predecessor in
ascending sequence (if exists)

17



Computation of an entry

How can an entry be computed from the values of other
entries? Which entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest
entry in T
Update T and S. (S gets coordinate from selected
neighbor, T gets value from selected neighbor increased
by one)

18



Computation of an entry

How can an entry be computed from the values of other
entries? Which entries do not depend on others?

Consider neighbors with smaller entry in A

From the smaller entries choose entry with the largest
entry in T
Update T and S. (S gets coordinate from selected
neighbor, T gets value from selected neighbor increased
by one)

18



Computation of an entry

How can an entry be computed from the values of other
entries? Which entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest
entry in T

Update T and S. (S gets coordinate from selected
neighbor, T gets value from selected neighbor increased
by one)

18



Computation of an entry

How can an entry be computed from the values of other
entries? Which entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest
entry in T
Update T and S. (S gets coordinate from selected
neighbor, T gets value from selected neighbor increased
by one)

18



Computation of an entry

How can an entry be computed from the values of other
entries? Which entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest
entry in T
Update T and S. (S gets coordinate from selected
neighbor, T gets value from selected neighbor increased
by one)

18



Calculation order

In which order can entries be computed so that values needed
for each entry have been determined in previous steps?

Bottom-Up: Start with
smallest element in A and
so on. (Means that one has
to sort A)

Recursively: Arbitrary order,
if entry is already computed
skip it otherwise compute for
smaller neighbor recursively.

19



Calculation order

In which order can entries be computed so that values needed
for each entry have been determined in previous steps?

Bottom-Up: Start with
smallest element in A and
so on. (Means that one has
to sort A)

Recursively: Arbitrary order,
if entry is already computed
skip it otherwise compute for
smaller neighbor recursively.

19



Calculation order

In which order can entries be computed so that values needed
for each entry have been determined in previous steps?

Bottom-Up: Start with
smallest element in A and
so on. (Means that one has
to sort A)

Recursively: Arbitrary order,
if entry is already computed
skip it otherwise compute for
smaller neighbor recursively.

19



Extracting the solution

How can the final solution be extracted once the table has been
filled?

Consider all entries to find one with a longest sequence.
From there, we can reconstruct the solution by following
the corresponding predecessors.

20



Extracting the solution

How can the final solution be extracted once the table has been
filled?

Consider all entries to find one with a longest sequence.
From there, we can reconstruct the solution by following
the corresponding predecessors.

20



Program

Implement a DP solution in the prepared CodeExpert program.

21



Questions / Suggestions?

22


	Repetition theory
	Editing Distance

	In-Class Exercise
	Implement on CodeExpert


