Informatik II

Übung 8

FS 2019

Program Today

1 Repetition Heaps

Max-]Heap¹

Binary tree with the following properties

- complete up to the lowest level
- Gaps (if any) of the tree in the last level to the right
- Max-(Min-)Heap: key of a child smaller (greater) that that of the parent node

¹Heap(data structure), not: as in "heap and stack" (memory allocation)

Heap and Array

Tree \rightarrow Array:

- children $(i) = \{2i, 2i + 1\}$
- lacksquare parent $(i)=\lfloor i/2 \rfloor$

parent

Depends on the starting index²

²For array that start at 0: $\{2i,2i+1\} \to \{2i+1,2i+2\}, \lfloor i/2 \rfloor \to \lfloor (i-1)/2 \rfloor$

Height of a Heap

A complete binary tree with height³ h provides

$$1 + 2 + 4 + 8 + \dots + 2^{h-1} = \sum_{i=0}^{h-1} 2^i = 2^h - 1$$

nodes. Thus for a heap with height h:

$$2^{h-1} - 1 < n \le 2^h - 1$$

 $\Leftrightarrow 2^{h-1} < n + 1 \le 2^h$

Particularly $h(n) = \lceil \log_2(n+1) \rceil$ and $h(n) \in \Theta(\log n)$.

Į

³here: number of edges from the root to a leaf

Insert new element at the first free position. Potentially violates the heap property.

- Insert new element at the first free position. Potentially violates the heap property.
- Reestablish heap property: climb successively

- Insert new element at the first free position. Potentially violates the heap property.
- Reestablish heap property: climb successively

- Insert new element at the first free position. Potentially violates the heap property.
- Reestablish heap property: climb successively
- Worst case number of operations: $\mathcal{O}(\log n)$

Replace the maximum by the lower right element

- Replace the maximum by the lower right element
- Reestablish heap property: sift down successively (in the direction of the greater child)

-

- Replace the maximum by the lower right element
- Reestablish heap property: sift down successively (in the direction of the greater child)

-

- Replace the maximum by the lower right element
- Reestablish heap property: sift down successively (in the direction of the greater child)
- Worst case number of operations: $\mathcal{O}(\log n)$

-

Algorithm SiftDown(A, i, m)

```
Input:
                Array A with heap structure for the children of i. Last element
                m.
Output:
               Array A with heap structure for i with last element m.
while 2i \le m do
    j \leftarrow 2i; // j left child
    if j < m and A[j] < A[j+1] then
        i \leftarrow i + 1; // j right child with greater key
    if A[i] < A[j] then
        swap(A[i], A[j])
        i \leftarrow j; // keep sinking down
    else
    i \leftarrow m; // sift down finished
```

- A[1,...,n] is a Heap. While n>1
- \blacksquare swap(A[1], A[n])
- \blacksquare SiftDown(A, 1, n 1);
- $n \leftarrow n-1$

```
A[1,...,n] is a Heap. While n>1
```

- \blacksquare swap(A[1], A[n])
- \blacksquare SiftDown(A, 1, n 1);
- $n \leftarrow n-1$

Ĉ

$$A[1,...,n]$$
 is a Heap. While $n>1$

- \blacksquare swap(A[1], A[n])
- \blacksquare SiftDown(A, 1, n 1);
- $n \leftarrow n-1$

ć

$$A[1,...,n]$$
 is a Heap. While $n>1$

- \blacksquare swap(A[1], A[n])
- \blacksquare SiftDown(A, 1, n 1);
- $n \leftarrow n-1$

ć

```
A[1,...,n] is a Heap. While n>1
```

- \blacksquare swap(A[1], A[n])
- \blacksquare SiftDown(A, 1, n-1);
- $n \leftarrow n-1$

		7	6	4	5	1	2
swap	\Rightarrow	2	6	4	5	1	7
siftDown	\Rightarrow	6	5	4	2	1	7
swap	\Rightarrow	1	5	4	2	6	7
siftDown	\Rightarrow	5	4	2	1	6	7
swap	\Rightarrow	1	4	2	5	6	7
siftDown	\Rightarrow	4	1	2	5	6	7
swap	\Rightarrow	2	1	4	5	6	7
siftDown	\Rightarrow	2	1	4	5	6	7
swap	\Rightarrow	1	2	4	5	6	7

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence:

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

Algorithm HeapSort(A, n)

```
Input: Array A with length n.
Output: A sorted.
// Build the heap.
for i \leftarrow n/2 downto 1 do
    SiftDown(A, i, n);
// Now A is a heap.
for i \leftarrow n downto 2 do
    swap(A[1], A[i])
    \mathsf{SiftDown}(A,1,i-1)
// Now A is sorted.
```

Analysis: sorting a heap

SiftDown traverses at most $\log n$ nodes. For each node 2 key comparisons. \Rightarrow sorting a heap costs in the worst case $2\log n$ comparisons.

Number of memory movements of sorting a heap also $O(n \log n)$.

Analysis: creating a heap

Calls to siftDown: n/2. Thus number of comparisons and movements: $v(n) \in \mathcal{O}(n \log n)$.

1:

Analysis: creating a heap

Calls to siftDown: n/2. Thus number of comparisons and movements: $v(n) \in \mathcal{O}(n \log n)$.

But mean length of the sift-down paths is much smaller and it holds that :

$$v(n) \in \mathcal{O}(\mathbf{n})$$

Questions / Suggestions?