Informatik Il

Ubung 8

FS 2019

Program Today

Repetition Heaps

Max-]Heap'

Binary tree with the following prop-
erties
complete up to the lowest
level

Gaps (if any) of the tree in
the last level to the right

Heap-Condition:
Max-(Min-)Heap: key of a
child smaller (greater) that
that of the parent node

root

!

22
20 / \ 18 «——parent
/ N\ / N\
16 12 15

17 «<—child

I\]\ /\ /\

"Heap(data structure), not: as in “heap and stack” (memory allocation)

Heap and Array

Tree — Array:

m children(i) = {24,2i + 1} 22
1]
20/ \

m parent(i) = |i/2]

parent /N / [5\
N 1’6 12
[22]20[18] 16 12] 5] 7] 3 [2 [8 [11] 4] A M\ /?\
12@89101112 32 14
(8] [9] [10] [' 1]
Children

Depends on the starting index?

2For array that start at 0: {24, 2i + 1} — {2i + 1,2i + 2}, |i/2] — [(i — 1)/2]

Height of a Heap

A complete binary tree with height® h provides
h—1
1+2+4+8+..+2"1=) 2i=2"—1
=0

nodes. Thus for a heap with height h:
"l _1<n<2h—1

& Ml ep1<2h

Particularly h(n) = [log,(n + 1)] and h(n) € O(logn).

3here: number of edges from the root to a leaf

Insert

m Insert new element at the first free oo
position. Potentially violates the heap N
20 18

property.
/ N\ / N\
3/ \2 8/ \11 14/\@ /\

Insert

m Insert new element at the first free

22
position. Potentially violates the heap / \
prOpel”[y. 20 18

m Reestablish heap property: climb 16/ \ Q/ N\

successively A
3 14 15 /\

2

Insert

m Insert new element at the first free
position. Potentially violates the heap / \
property.
m Reestablish heap property: climb / \ / \
successively / \
3 14 15 /\

2

Insert

m Insert new element at the first free

position. Potentially violates the heap / \
property.
m Reestablish heap property: climb / \ / \
successively / \ / \
m Worst case number of operations: 3 2 14 15

O(logn)

Remove the maximum

20/ \18
/ \ / \

106G 14/\ /\

Remove the maximum

m Replace the maximum by the lower

right element @
20/ \ 18
/ N\ / N\
16 12 15 17

3/\2 8/\11 /\ /\

Remove the maximum

m Replace the maximum by the lower
right element

m Reestablish heap property: sift down
successively (in the direction of the
greater child)

/20\
@ 18
SN N

16 12

/\2 8/\11 /\ /\

Remove the maximum

m Replace the maximum by the lower
right element

m Reestablish heap property: sift down
successively (in the direction of the
greater child)

16/ \18
/N 1/ \

ﬁ " WARA

Remove the maximum

m Replace the maximum by the lower
right element

m Reestablish heap property: sift down
successively (in the direction of the
greater child)

m Worst case number of operations:
O(logn)

16/ \18
/N 1/ \

ﬁ " WARA

Algorithm SiftDown(A, 7, m)

Input: Array A with heap structure for the children of 7. Last element
m.
Output: Array A with heap structure for ¢ with last element m.

while 2 < m do
§+ 23 // j left child
if 7 <m and A[j] < A[j + 1] then
| < j+1;// jright child with greater key
if Afi] < A[j] then
swap(Ali], A[j])
i < j; // keep sinking down
else
| i m; // sift down finished

Sort heap

A[l,...,n] is a Heap.
While n > 1

m swap(A[l], A[n])

m SiftDown(A,1,n — 1);
Bn<n—1

7 6 4 5 1

2

Sort heap

swap

A[l,...,n] is a Heap.
While n > 1

m swap(A[l], A[n])

m SiftDown(A,1,n — 1);
Bn<n—1

N N

D O

A B~

o O

N

Sort heap

A[l,...,n] is a Heap.
While n > 1

m swap(A[l], A[n])

m SiftDown(A,1,n — 1);
Bn<n—1

swap
siftDown

=
=

D N

aa o O

IO NN

N o1 O

<~ IS

Sort heap

swap =
siftDown =
All,...,n] is a Heap. swap N

While n > 1

m swap(A[l], A[n])

m SiftDown(A,1,n — 1);
BEn<—n—1

- O N

o o1 oo O

A A A A

Sort heap

A[l,...,n] is a Heap.
While n > 1

m swap(A[l], A[n])

m SiftDown(A, 1,n — 1);
Bn<n—1

swap
siftDown
swap
siftDown
swap
siftDown
swap
siftDown
swap

O 2 2 A

NN DA =2 01 = 0NN
— =2 N N O O1 OO O

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence:

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

Algorithm HeapSort(A, n)

Input: Array A with length n.
Output: A sorted.
// Build the heap.
for i < n/2 downto 1 do
 SiftDown(A, i, n);
// Now A is a heap.
for i < n downto 2 do
swap(A[1], Ali])
SiftDown(A, 1,7 — 1)

// Now A is sorted.

Analysis: sorting a heap

SiftDown traverses at most log n nodes. For each node 2 key
comparisons. = sorting a heap costs in the worst case 2logn
comparisons.

Number of memory movements of sorting a heap also O(nlogn).

Analysis: creating a heap

Calls to siftDown: n /2. Thus number of comparisons and
movements: v(n) € O(nlogn).

Analysis: creating a heap

Calls to siftDown: n /2. Thus number of comparisons and
movements: v(n) € O(nlogn).

But mean length of the sift-down paths is much smaller and it holds
that :

v(n) € O(n)

Questions / Suggestions?

	Repetition Heaps

