Informatik Il

Ubung 7

FS 2019



Program Today

Recap Binary Trees

Repetition Lectures
m AVL Condition
m AVL Insert

In-Class-Exercises



Comparison of binary Trees

Search trees Heaps

Min- / Max- Heap

Balanced trees
AVL, red-black tree

in Java: PriorityQueue TreeSet
/ \/ \16 /6\ / \
¢ 5 \ v \ \2 / N
1 4 /
P { \7
Insertion O(h(T)) O(logn) O(logn)
Search O(h(T)) O(n) (M) O(logn)
Deletion O(R(T)) Search + O(logn) O(logn)



https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html

Comparison of binary Trees

Search trees Heaps
Min- / Max- Heap

Balanced trees
AVL, red-black tree

in Java: PriorityQueue TreeSet

T

X N NN N

b 4/ \7
Insertion O(h(T)) O(logn) O(logn)
Search O(h(T)) O(n) (M) O(logn)
Deletion O(R(T)) Search + O(logn) O(logn)

Recall: O(logn)< O(h(T))< O(n)


https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html

Recall: Pre-/In-/Post- Order
1
7/ 6\9
RN RN

/5
4
Pre-order:
In-order:

Post-order:



Recall: Pre-/In-/Post- Order
1
7/ 6\9
RN RN

/5

4

Pre-order: 16 7 5 4 3 9 2 1
In-order:

Post-order:



Recall: Pre-/In-/Post- Order
1
7/ 6\9
RN RN

/5
4
Pre-order: 16 7 5 4 3 9 2 1
In-order: 4 5 7 3 16 2 9 1

Post-order:



Recall: Pre-/In-/Post- Order
1
7/ 6\9
RN RN

/5
4
Pre-order: 16 7 5 4 3 9 2 1
In-order: 4 5 7 3 16 2 9 1

Post-order: 4 5 3 7 2 1 9 16



Repetition: Binary Trees, Inserting a Key

Binary Search Trees MinHeap
m Search for Key. m Insert at the very back of the
m Insert at the reached Array.
empty leaf (null). m Restore Heap-Condition:

siftUp (climb successively).



Repetition: Binary Trees, Inserting a Key

Binary Search Trees MinHeap
m Search for Key. m Insert at the very back of the
m Insert at the reached Array.
empty leaf (null). m Restore Heap-Condition:

siftUp (climb successively).

Exercise: Insert 4,8, 16, 1, 6, 7 into empty Tree/Heap.



Repetition: Binary Trees, Inserting a Key

Binary Search Trees MinHeap
m Search for Key. m Insert at the very back of the
m Insert at the reached Array.
empty leaf (null). m Restore Heap-Condition:

siftUp (climb successively).

(4)
@) O
OB
@



Repetition: Binary Trees, Inserting a Key

Binary Search Trees MinHeap
m Search for Key. m Insert at the very back of the
m Insert at the reached Array.
empty leaf (null). m Restore Heap-Condition:

siftUp (climb successively).

(4)
@) O
OB
@




Repetition: Binary Trees, Deleting a Key

Binary Search Trees MinHeap
m Replace key k by m Replace key by last element of
symmetric successor n. the array.

m Careful: What about right m Restore Heap-Condition:
child of n? siftDown or siftUp.



Repetition: Binary Trees, Deleting a Key

Binary Search Trees MinHeap
m Replace key k by m Replace key by last element of
symmetric successor n. the array.
m Careful: What about right m Restore Heap-Condition:
child of n? siftDown or siftUp.

Exercise: Delete 4 from Example Tree/Heap.



Repetition: Binary Trees, Deleting a Key

Binary Search Trees MinHeap
m Replace key k by m Replace key by last element of
symmetric successor n. the array.
m Careful: What about right m Restore Heap-Condition:
child of n? siftDown or siftUp.

O (1)
0 8 0. D
@ 9



Java: Delete from MinHeap

Problem! How to find a key in a MinHeap?
= We usually only take care of root deletions (Extract-Min).



Balance of a node

The height balance of a node v is de-
fined as the height difference of its
sub-trees Tj(v) and 7T,.(v) hy

bal(v) := h(T:(v)) = h(Ti(v))




AVL Condition

AVL Condition: for eacn node v of a
tree bal(v) € {—1,0,1}




(Counter-)Examples

/' \
/' \
\ /N
I\ I\
/\
AVL tree with height
2 AVL tree with height

3

/' \
[\ [
/\

No AVL tree



Insertion

Balance

m Keep the balance stored in each node
m Re-balance the tree in each update-operation

New node n is inserted:

m Insert the node as for a search tree.
m Check the balance condition increasing from n to the root.



Balance at Insertion Point

/N /N ANEVAN
ANANA ANEERAR A
case 1: bal(p) = +1 case 2: bal(p) = —1

Finished in both cases because the subtree height did not change



Balance at Insertion Point

/N /N /N /N
— /\ —/\
case 3.1: bal(p) = 0 right case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)



upin(p) - invariant

When upin(p) is called it holds that

m the subtree from p is grown and
m bal(p) € {—1,+1}



upin(p)

Assumption: p is left son of pp'
P 1;< P 70\ P I; 0\ p 7 <
ANEEREA ANEERA

case 1: bal(pp) = +1, done. case 2: bal(pp) = 0, upin (pp)

In both cases the AVL-Condition holds for the subtree from pp

1If p is a right son: symmetric cases with exchange of +1 and —1



upin(p)
Assumption: p is left son of pp
pp =il
o \

case 3: bal(pp) = —1,

This case is problematic: adding n to the subtree from pp has
violated the AVL-condition. Re-balance!

Two cases bal(p) = —1, bal(p) = +1



Rotations

case 1.1 bal(p) = —1. 2

e k
pp Y —2
7N\
Py —1
7N\ —
t rotation
S right
to
tl h—1
- h

2p right son: = bal(pp) = bal(p) = +1, left rotation




Rotations

case 1.1 bal(p) = —1. 3

h+2 ]L

pp. Z -2

N

p$+1

/ hY —-1/41 d(jbi@
/ \ ta | rotation

bt left-right

- e

h—1 h—2
h—2 h—1

Sp right son = bal(pp) = +1, bal(p) = —1, double rotation right left

pp Y 0

T 0/—1

Z +1/0

7N N




Augment a Tree

Exercise:

Augment the nodes n of a binary search tree with their heights
n.height. Make sure the height stays consistent when nodes are
inserted.

[Start here:
https://expert.ethz.ch/print/ifbaug2/SS19/e07 _examples]


https://expert.ethz.ch/print/ifbaug2/SS19/e07_examples

Questions / Suggestions?



	Recap Binary Trees
	Repetition Lectures
	AVL Condition
	AVL Insert

	In-Class-Exercises

