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Program Today

1 Recap Binary Trees

2 Repetition Lectures

AVL Condition

AVL Insert

3 In-Class-Exercises
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Comparison of binary Trees

Search trees Heaps
Min- / Max- Heap

Balanced trees
AVL, red-black tree

in Java: PriorityQueue TreeSet
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Insertion O(h(T )) O(log n) O(log n)
Search O(h(T )) O(n) (!!) O(log n)

Deletion O(h(T )) Search + O(log n) O(log n)

Recall: O(log n)≤ O(h(T ))≤ O(n)
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https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeSet.html
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Recall: Pre- / In- / Post- Order
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Pre-order:

16 7 5 4 3 9 2 1

In-order:

4 5 7 3 16 2 9 1

Post-order:

4 5 3 7 2 1 9 16
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Repetition: Binary Trees, Inserting a Key
Binary Search Trees

Search for Key.
Insert at the reached
empty leaf (null).
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MinHeap
Insert at the very back of the
Array.
Restore Heap-Condition:
siftUp (climb successively).
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Exercise: Insert 4, 8, 16, 1, 6, 7 into empty Tree/Heap.
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Repetition: Binary Trees, Deleting a Key
Binary Search Trees

Replace key k by
symmetric successor n.
Careful: What about right
child of n?
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7 16

MinHeap
Replace key by last element of
the array.
Restore Heap-Condition:
siftDown or siftUp.
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7Exercise: Delete 4 from Example Tree/Heap.
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Java: Delete from MinHeap

Problem! How to find a key in a MinHeap?

⇒We usually only take care of root deletions (Extract-Min).
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Balance of a node

The height balance of a node v is de-
fined as the height difference of its
sub-trees Tl(v) and Tr(v)

bal(v) := h(Tr(v))− h(Tl(v))

v

Tl(v)

Tr(v)

hl
hr

bal(v)
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AVL Condition

AVL Condition: for eacn node v of a
tree bal(v) ∈ {−1, 0, 1}

v

Tl(v)

Tr(v)

h h+ 1

h+ 2
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(Counter-)Examples

AVL tree with height
2 AVL tree with height

3 No AVL tree
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Insertion

Balance

Keep the balance stored in each node
Re-balance the tree in each update-operation

New node n is inserted:

Insert the node as for a search tree.
Check the balance condition increasing from n to the root.
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Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Finished in both cases because the subtree height did not change
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Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)
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upin(p) - invariant

When upin(p) is called it holds that

the subtree from p is grown and
bal(p) ∈ {−1,+1}
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upin(p)

Assumption: p is left son of pp1

=⇒

pp +1 pp 0

p p

case 1: bal(pp) = +1, done.

=⇒

pp 0 pp −1

p p

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

1If p is a right son: symmetric cases with exchange of +1 and −1
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upin(p)
Assumption: p is left son of pp

pp −1

p

case 3: bal(pp) = −1,

This case is problematic: adding n to the subtree from pp has
violated the AVL-condition. Re-balance!

Two cases bal(p) = −1, bal(p) = +1
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Rotations
case 1.1 bal(p) = −1. 2

y

x

t1

t2

t3

pp −2

p −1

h

h− 1

h− 1

h+ 2 h

=⇒
rotation

right

x

y

t1 t2 t3

pp 0

p 0

h h− 1 h− 1

h+ 1 h+ 1

2p right son: ⇒ bal(pp) = bal(p) = +1, left rotation
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Rotations
case 1.1 bal(p) = −1. 3

z

x

y

t1 t2 t3

t4

pp −2

p +1

h −1/+ 1

h− 1

h− 1

h− 2

h− 2

h− 1

h− 1

h+ 2 h

=⇒
double
rotation
left-right

y

x z

t1
t2 t3

t4

pp 0

0/− 1 +1/0

h− 1 h− 1

h− 2

h− 2

h− 1

h− 1

h+ 1

3p right son⇒ bal(pp) = +1, bal(p) = −1, double rotation right left
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Augment a Tree

Exercise:
Augment the nodes n of a binary search tree with their heights
n.height. Make sure the height stays consistent when nodes are
inserted.

[Start here:
https://expert.ethz.ch/print/ifbaug2/SS19/e07_examples]
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https://expert.ethz.ch/print/ifbaug2/SS19/e07_examples


Questions / Suggestions?
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