Informatik II

Übung 7

FS 2019

1

Program Today

- 1 Recap Binary Trees
- 2 Repetition Lectures
 - AVL Condition
 - AVL Insert

3 In-Class-Exercises

Comparison of binary Trees

Comparison of binary Trees

Recall: $\mathcal{O}(\log n) \leq \mathcal{O}(h(T)) \leq \mathcal{O}(n)$

Pre-order:

In-order:

Post-order:

Pre-order: 16 7 5 4 3 9 2 1 In-order:

Post-order:

 Pre-order:
 16
 7
 5
 4
 3
 9
 2
 1

 In-order:
 4
 5
 7
 3
 16
 2
 9
 1

 Post-order:
 1

Pre-order:	16	7	5	4	3	9	2	1
In-order:	4	5	7	3	16	2	9	1
Post-order:	4	5	3	7	2	1	9	16

Binary Search Trees

- Search for Key.
- Insert at the reached empty leaf (null).

- Insert at the very back of the Array.
- Restore Heap-Condition: siftUp (climb successively).

Binary Search Trees

- Search for Key.
- Insert at the reached empty leaf (null).

MinHeap

- Insert at the very back of the Array.
- Restore Heap-Condition: siftUp (climb successively).

Exercise: Insert 4, 8, 16, 1, 6, 7 into empty Tree/Heap.

Binary Search Trees

- Search for Key.
- Insert at the reached empty leaf (null).

- Insert at the very back of the Array.
- Restore Heap-Condition: siftUp (climb successively).

Binary Search Trees

- Search for Key.
- Insert at the reached empty leaf (null).

- Insert at the very back of the Array.
- Restore Heap-Condition: siftUp (climb successively).

Binary Search Trees

- Replace key k by symmetric successor n.
- Careful: What about right child of n?

- Replace key by last element of the array.
- Restore Heap-Condition: siftDown or siftUp.

Binary Search Trees

- Replace key k by symmetric successor n.
- Careful: What about right child of n?

MinHeap

- Replace key by last element of the array.
- Restore Heap-Condition: siftDown or siftUp.

Exercise: Delete 4 from Example Tree/Heap.

Binary Search Trees

- Replace key k by symmetric successor n.
- Careful: What about right child of n?

- Replace key by last element of the array.
- Restore Heap-Condition: siftDown or siftUp.

Problem! How to find a key in a MinHeap?

 \Rightarrow We usually only take care of root deletions (Extract-Min).

The height *balance* of a node v is defined as the height difference of its sub-trees $T_l(v)$ and $T_r(v)$

$$\operatorname{bal}(v) := h(T_r(v)) - h(T_l(v))$$

AVL Condition

AVL Condition: for each node v of a tree $bal(v) \in \{-1, 0, 1\}$

(Counter-)Examples

Balance

- Keep the balance stored in each node
- Re-balance the tree in each update-operation

New node n is inserted:

- Insert the node as for a search tree.
- Check the balance condition increasing from n to the root.

Balance at Insertion Point

Finished in both cases because the subtree height did not change

Balance at Insertion Point

Not finished in both case. Call of upin(p)

When upin(p) is called it holds that

■ the subtree from p is grown and
■ bal(p) ∈ {-1, +1}

upin(p)

Assumption: p is left son of pp^1

In both cases the AVL-Condition holds for the subtree from pp

¹ If p is a right son: symmetric cases with exchange of +1 and -1

upin(p)

Assumption: p is left son of pp

case 3: bal(pp) = -1,

This case is problematic: adding n to the subtree from pp has violated the AVL-condition. Re-balance!

Two cases bal(p) = -1, bal(p) = +1

Rotations

case 1.1 bal(p) = -1.² h+2ppy-2h+1h + 1pp x 0pxy 0 protation t_3 right h-1 t_2 t_1 t_2 t_3 h-1 t_1 h-1h-1hh

²p right son: \Rightarrow bal(pp) = bal(p) = +1, left rotation

Rotations

case 1.1 bal(p) = -1.³ h+2hppz-2h + 1 $pp \quad y \quad 0$ p x+z + 1/0x 0/-1 $y_{-1/+1}$ hdouble t_4 rotation h-1left-right t_2 t_3 t_1 t_2 t_3 t_1 t_4 h-1h - 1h - 1h-1h-2h - 1h-2h-2h - 1h-2h-1

 ${}^{3}p$ right son \Rightarrow bal(pp) = +1, bal(p) = -1, double rotation right left

Exercise:

Augment the nodes n of a binary search tree with their heights n.height. Make sure the height stays consistent when nodes are inserted.

[Start here:

https://expert.ethz.ch/print/ifbaug2/SS19/e07_examples]

Questions / Suggestions?