Informatik II

Übung 3

FS 2019

1

Program Today

1 Feedback of last exercise

2 Python Short Exercises

What would be your strategy if you would have an arbitrary number of eggs?

- What would be your strategy if you would have an arbitrary number of eggs?
 - Binary search. Worst case: $\log_2 n$ tries.

- What would be your strategy if you would have an arbitrary number of eggs?
 - Binary search. Worst case: $\log_2 n$ tries.
- What would you do if you only had one egg?

- What would be your strategy if you would have an arbitrary number of eggs?
 - Binary search. Worst case: $\log_2 n$ tries.
- What would you do if you only had one egg?
 - Start from the bottom. *n* tries.

Throwing Eggs

Strategy using two eggs

■ First approach: intervals of equal length: partition *n* into *k* intervals: maximum number of trials

Throwing Eggs

Strategy using two eggs

First approach: intervals of equal length: partition n into k intervals: maximum number of trials f(k) = k + n/k - 1Minimize maximum number of trials:

Throwing Eggs

Strategy using two eggs

First approach: intervals of equal length: partition n into k intervals: maximum number of trials f(k) = k + n/k - 1Minimize maximum number of trials: $f'(k) = 1 - n/k^2 = 0 \Rightarrow k = \sqrt{n}$.

$$f'(k) = 1 - n/k^2 = 0 \Rightarrow k = \sqrt{n}$$

 $n = 100 \Rightarrow 19$ Trials. $\Theta(\sqrt{n})$

Second approach: take first throw trial into account by considering decreasing interval sizes. Choose smallest s such that $s + s - 1 + s - 2 + ... + 1 = s(s + 1)/2 \ge 100 \Rightarrow s = 14$. Maximum number of trials: $s \in \Theta(\sqrt{n})$

Asymptotically both approaches are equally good. Practically the second way is better.

Hottest Path

```
int current = 0;
List<Integer> route = new ArrayList<Integer>();
route.add(0):
while (!food[current]) { // termination criterion
 float max = -1;
 int next = -1;
 for (int j = 0; j < edges.length; ++j) {
   if (edges[current][j] != 0 && max < popularity[current][j]) {</pre>
     max = popularity[current][j];
     next = j;
   }
  }
 route.add(next);
  current = next:
}
```

Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

5	4	1	3	2		5	4	1	3	2		5	4	1	3	2	
1	4	5	3	2	•	4	1	3	2	5		4	5	1	3	2	
1	2	5	3	4		1	3	2	4	5		1	4	5	3	2	
1	2	3	5	4		1	2	3	4	5		1	3	4	5	2	
1	2	3	4	5	•							1	2	3	4	5	

Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

5	4	1	3	2		5	4	1	3	2		5	4	1	3	2	
1	4	5	3	2	•	4	1	3	2	5		4	5	1	3	2	
1	2	5	3	4		1	3	2	4	5		1	4	5	3	2	
1	2	3	5	4		1	2	3	4	5		1	3	4	5	2	
1	2	3	4	5	•							1	2	3	4	5	

Quiz

Consider the following three sequences of snap-shots (steps) of the algorithms (a) Insertion Sort, (b) Selection Sort and (c) Bubblesort. Below each sequence provide the corresponding algorithm name.

se	elec	ctio	n				k	oubb	les	ort			in	ser	tior	۱			
	1	2	3	4	5									1	2	3	4	5	-
	1	2	3	5	4	•		1	2	3	4	5		1	3	4	5	2	-
	1	2	5	3	4			1	3	2	4	5		1	4	5	3	2	-
	1	4	5	3	2			4	1	3	2	5		4	5	1	3	2	
	5	4	1	3	2			5	4	1	3	2		5	4	1	3	2	_

Execute two further iterations of the algorithm Quicksort on the following array. The first element of the (sub-)array serves as the pivot.

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	<u>8</u>	9	15	10	13

Execute two further iterations of the algorithm Quicksort on the following array. The first element of the (sub-)array serves as the pivot.

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	<u>8</u>	9	15	10	13

Execute two further iterations of the algorithm Quicksort on the following array. The first element of the (sub-)array serves as the pivot.

8	7	10	15	3	6	9	5	2	13
2	7	5	6	3	<u>8</u>	9	15	10	13
<u>2</u>	7	5	6	3	<u>8</u>	<u>9</u>	15	10	13
<u>2</u>	3	5	6	<u>7</u>	<u>8</u>	<u>9</u>	13	10	<u>1</u> 5

2. Python Short Exercises

Questions / Suggestions?