Informatik II

Übung 13

FS 2019

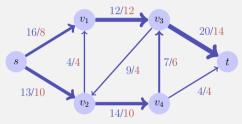
1

1 Feedback of last exercise

2 Repetition of Lecture

3 In-Class-Exercise (practical)

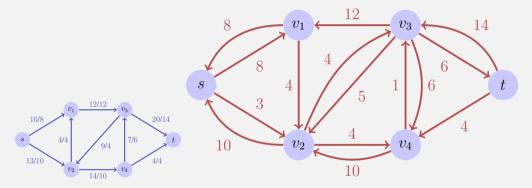
1. Feedback of last exercise


2. Repetition of Lecture

Flow

A *Flow* $f: V \times V \rightarrow \mathbb{R}$ fulfills the following conditions:

- Bounded Capacity: For all $u, v \in V$: $f(u, v) \le c(u, v)$.
 Skew Symmetry: For all $u, v \in V$: f(u, v) = -f(v, u).
- Conservation of flow: For all $u \in V \setminus \{s, t\}$:


$$\sum_{v \in V} f(u, v) = 0.$$

Value of the flow: $|f| = \sum_{v \in V} f(s, v).$ Here |f| = 18.

Rest Network

Rest network G_f provided by the edges with positive rest capacity:

Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel capacity-edges

expansion path p: simple path from s to t in the rest network G_f . *Rest capacity* $c_f(p) = \min\{c_f(u, v) : (u, v) \text{ edge in } p\}$

Max-Flow Min-Cut Theorem

Theorem

Let f be a flow in a flow network G = (V, E, c) with source s and sink t. The following statements are equivalent:

- **1** f is a maximal flow in G
- **2** The rest network G_f does not provide any expansion paths
- It holds that |f| = c(S,T) for a cut (S,T) of G.

Algorithm Ford-Fulkerson(G, s, t)

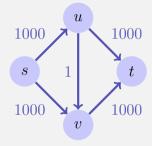
Input: Flow network G = (V, E, c)**Output:** Maximal flow f.

for $(u, v) \in E$ do $\[\int f(u, v) \leftarrow 0 \]$

while Exists path $p: s \rightsquigarrow t$ in rest network G_f do $c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \in p\}$ foreach $(u, v) \in p$ do $f(u, v) \leftarrow f(u, v) + c_f(p)$ $f(v, u) \leftarrow f(v, u) - c_f(p)$

Practical Consideration

In an implementation of the Ford-Fulkerson algorithm the negative flow egdes are usually not stored because their value always equals the negated value of the antiparallel edge.


$$f(u, v) \leftarrow f(u, v) + c_f(p)$$

$$f(v, u) \leftarrow f(v, u) - c_f(p)$$

is then transformed to

 $\begin{array}{l} \text{if } (u,v) \in E \text{ then} \\ \mid \quad f(u,v) \leftarrow f(u,v) + c_f(p) \\ \text{else} \end{array}$

$$\int f(v,u) \leftarrow f(v,u) - c_f(p)$$

■ For an integer flow, the algorithms requires maximally |f_{max}| iterations of the while loop (because the flow increases minimally by 1). Search a single increasing path (e.g. with DFS or BFS) O(|E|) Therefore overal running time in O(f_{max}|E|).

With an unlucky choice the algorithm may require up to 2000 iterations here.

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in G_f the expansion path of shortest possible length (e.g. with BFS)

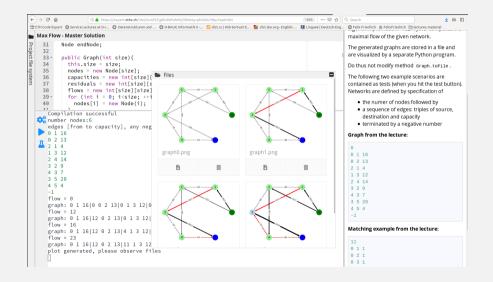
Edmonds-Karp Algorithm

Theorem

When the Edmonds-Karp algorithm is applied to some integer valued flow network G = (V, E) with source s and sink t then the number of flow increases applied by the algorithm is in $\mathcal{O}(|V| \cdot |E|)$. \Rightarrow Overal asymptotic runtime: $\mathcal{O}(|V| \cdot |E|^2)$

[Without proof]

Application: maximal bipartite matching


Given: bipartite undirected graph G = (V, E). Matching $M: M \subseteq E$ such that $|\{m \in M : v \in m\}| \le 1$ for all $v \in V$. Maximal Matching M: Matching M, such that $|M| \ge |M'|$ for each matching M'.

3. In-Class-Exercise (practical)

Implementation of Max-Flow

Max-Flow Implementation

Questions?