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Program Today

1 Feedback of last exercise

2 Repetition of Lecture

3 In-Class-Exercise (practical)
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1. Feedback of last exercise
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2. Repetition of Lecture
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Flow
A Flow f : V ×V → R fulfills the following
conditions:

Bounded Capacity:
For all u, v ∈ V : f(u, v) ≤ c(u, v).
Skew Symmetry:
For all u, v ∈ V : f(u, v) = −f(v, u).
Conservation of flow:
For all u ∈ V \ {s, t}:∑

v∈V

f(u, v) = 0.
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Value of the flow:
|f | =

∑
v∈V f(s, v).

Here |f | = 18.
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Rest Network

Rest network Gf provided by the edges with positive rest capacity:
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Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel

capacity-edges
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Augmenting Paths

expansion path p: simple path from s to t in the rest network Gf .

Rest capacity cf(p) = min{cf(u, v) : (u, v) edge in p}
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Max-Flow Min-Cut Theorem

Theorem
Let f be a flow in a flow network G = (V,E, c) with source s and
sink t. The following statementsa are equivalent:

1 f is a maximal flow in G

2 The rest network Gf does not provide any expansion paths
3 It holds that |f | = c(S, T ) for a cut (S, T ) of G.
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Algorithm Ford-Fulkerson(G, s, t)

Input: Flow network G = (V,E, c)
Output: Maximal flow f .

for (u, v) ∈ E do
f(u, v)← 0

while Exists path p : s t in rest network Gf do
cf (p)← min{cf (u, v) : (u, v) ∈ p}
foreach (u, v) ∈ p do

f(u, v)← f(u, v) + cf (p)
f(v, u)← f(v, u)− cf (p)
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Practical Consideration

In an implementation of the Ford-Fulkerson algorithm the negative
flow egdes are usually not stored because their value always equals
the negated value of the antiparallel edge.

f(u, v)← f(u, v) + cf (p)
f(v, u)← f(v, u)− cf (p)

is then transformed to
if (u, v) ∈ E then

f(u, v)← f(u, v) + cf (p)
else

f(v, u)← f(v, u)− cf (p)
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Analysis

For an integer flow, the algorithms requires
maximally |fmax| iterations of the while loop
(because the flow increases minimally by 1).
Search a single increasing path (e.g. with
DFS or BFS) O(|E|) Therefore overal
running time in O(fmax|E|).
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With an unlucky choice the al-
gorithm may require up to 2000
iterations here.
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Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in Gf the
expansion path of shortest possible length (e.g. with BFS)
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Edmonds-Karp Algorithm

Theorem
When the Edmonds-Karp algorithm is applied to some integer
valued flow network G = (V,E) with source s and sink t then the
number of flow increases applied by the algorithm is in O(|V | · |E|).
⇒ Overal asymptotic runtime: O(|V | · |E|2)

[Without proof]
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Application: maximal bipartite matching
Given: bipartite undirected graph G = (V,E).

Matching M : M ⊆ E such that |{m ∈M : v ∈ m}| ≤ 1 for all v ∈ V .

Maximal Matching M : Matching M , such that |M | ≥ |M ′| for each
matching M ′.
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3. In-Class-Exercise (practical)

Implementation of Max-Flow
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Max-Flow Implementation
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Questions?
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