Informatik Il

Ubung 11

FS 2019

Program Today

Last Week: BFS with Lazy Deletion
Adjacency List in Java, continued

Repetition of Lecture
m Dijkstra’s Algorithm
m Bellman-Ford Algorithm

In-Class-Exercise (theoretical)

In-Class-Exercise (practical)

BFS with Lazy Deletion

public void BFS2(int s) {

boolean visited[] = new boolean[V];
LinkedList<Integer> queue =

= new LinkedList<Integer>();
queue.add(s) ;
while (!queue.isEmpty()) {
int u = queue.poll();
if (lvisited[ul) {
visited[u] = true;
System.out.print(u + " ");
for (int v : adj.get(u))
queue.add(v) ;

BFS with Lazy Deletion

public void BFS2(int s) {

boolean visited[] = new boolean[V];
LinkedList<Integer> queue =
queue.add(s) ;
while (!queue.isEmpty()) {
int u = queue.poll();
if (lvisited[u]) {
visited[u] = true;
System.out.print(u + " ");
for (int v : adj.get(u))
queue.add(v) ; «__

new LinkedList<Integer>();

A node is pushed on
¥ Queue once for each in-
coming edge.

BFS with Lazy Deletion

public void BFS2(int s) {

boolean visited[] = new boolean[V];

LinkedList<Integer> queue = new LinkedList<Integer>();
queue.add(s) ;

Node marked as visited,
while (!queue.isEmpty()) { but its copies are not
int u = queue.poll()

; immediately removed from Queue.
if (lvisited[ul) { «

(“Lazy Deletion”)
visited[u] = true;

System.out.print(u + " ");
for (int v : adj.get(u))
queue.add(v) ; «__

A node is pushed on
b Queue once for each in-
coming edge.

Adjacency List Unweighted Graph

class Graph { // G = (V,E) as adjacency list
private int V; // number of vertices
private ArrayList<LinkedList<Integer>> adj; // adj. list
// Constructor
public Graph(int n) {
V =n;
adj = new ArrayList<LinkedList<Integer>>(V);
for (int i=0; i<V; ++i)
adj.add(i,new LinkedList<Integer>());
}
// Edge adder method
public void addEdge(int u, int v) {
adj.get(u) .add(v);
}

Adjacency List weighted Graph

class Graph { // G = (V,E) as adjacency list
private int V; // number of vertices
private ArrayList<LinkedList<Pair>> adj; // adj. list
// Constructor
public Graph(int n) {
V =n;
adj = new ArrayList<LinkedList<Pair>>(V);
for (int i=0; i<V; ++i)
adj.add(i,new LinkedList<Pair>());
}
// Edge adder method, (u,v) has weight w
public void addEdge(int u, int v, int w) {
adj.get(u) .add(new Pair(v,w));
}

Adjacency List weighted Graph

public class Pair implements Comparable<Pair> {

public int key;

public int value;

// Constructor

public Pair(int key, int value) {
this.key = key;
this.value = value;

%

Q@0verride // we need this later...

public int compareTo(Pair other) {
return this.value—other.value;

}

// for general usage of pairs we would also need

// to provide equals(), hashCode(),

3. Repetition of Lecture

Weighted Graphs

Given: G = (V,E,c),c: E = R, s,t € V.

Wanted: Length (weight) of a shortest path from s to ¢.
Path: p = (s = vg,v1,...,0 = t), (v;,v;11) € E (0 <i <k)
Weight: c(p) := 3"y c((vi, vig1)).

a
O/ ~
N |

Path with weight 9

Shortest Paths

Weight of a shortest path from w to v:

51, v) = 00 no path from u to v
’ min{c(p) : u ~» v} sonst

Ingredients of an Algorithm

Wanted: shortest paths from a starting node s.

m Weight of the shortest path found so far
ds : V —- R

At the beginning: ds[v] = oo for allv € V.
Goal: ds[v] = §(s,v) forallv € V.

m Predecessor of a node
sV =V

Initially 75[v] undefined for each node v € V'

General Algorithm

Initialise ds and 7,: ds[v] = oo, 7s[v] = null for each v € V
Set dg[s] < 0
Choose an edge (u,v) € £
Relaxiere (u,v):
if ds[v] > d[u] + c(u,v) then
ds[v] < ds[u] + c(u, v)
Ts[v] ¢ u
Repeat 3 until nothing can be relaxed any more.
(until ds[v] < ds[u] + c(u,v) V(u,v) € E)

Assumption

7',\ 6 \

S 2 3 e

v \r/
N

b ¢#—{ d

All weights of G are positive.

Basic Idea

Set V' of nodes is partitioned into

m the set // of nodes for which a
shortest path from s is already known,

mtheset R=J, ., V" (v) \ M of
nodes where a shortest path is not yet
known but that are accessible directly
from M,

m the set of nodes that
have not yet been considered.

Induction

Induction over [M|: choose nodes from
R with smallest upper bound. Add r to M
and update R and U accordingly.

Correctness: if within the “wavefront” a
node with minimal weight w has been
found then no path over later nodes (pro-
viding weight > d) can provide any im-
provement.

Algorithm Dijkstra(G, s)

Input: Positively weighted Graph G = (V, E, ¢), starting point s € V/,
Output: Minimal weights d of the shortest paths and corresponding predecessor
node for each node.

foreach u € V do
dsu] < oo; ms[u] < null

ds[s] < 0; R+ {s}
while R # () do
u < ExtractMin(R)
foreach v € N*(u) do
if ds[u] + c(u,v) < ds[v] then
ds[v] < ds[u] + c(u, v)
Ts[v] < u
R+ RU{v}

Example

yi \
) [4
\ /

Example

2

N
O

3

M = {s}

R={}
U={a,b,c,d, e}

Example

M = {s}
R = {a,b}
U={cd,e}

Example

M = {s,a}
R ={b,c}
U={d,e}

Example

M ={s,a,b}
R = {c,d}
U = {e}

Example

M = {s,a,b,d}

R=/{c, e}
U={}

Example

M = {s,a,b,d, e}

R = {c}
U={}

Example

M = {s,a,b,d, e, c}

R ={}
U={}

Implementation: Data Structure for R?

Required operations:

m Insert (add to R)
m ExtractMin (over R) and DecreaseKey (Update in R)

foreach v € N*(u) do

if ds[u] + c(u,v) < ds[v] then

ds[v] < ds[u] + c(u,v)

Ts[v] < u

if v € R then

DecreaseKey(R, v) // Update of a d(v) in the heap of R

else
. R+ RU{v} // Update of d(v) in the heap of R

MinHeap!

DecreaseKey

m DecreaseKey: climbing in MinHeap in O(log |V])
m Position in the heap (i.e. array index of element in the heap)?

DecreaseKey

m DecreaseKey: climbing in MinHeap in O(log |V])
m Position in the heap (i.e. array index of element in the heap)?

m alternative (a): Store position at the nodes

DecreaseKey

m DecreaseKey: climbing in MinHeap in O(log |V])
m Position in the heap (i.e. array index of element in the heap)?

m alternative (a): Store position at the nodes
m alternative (b): Hashtable of the nodes

DecreaseKey

m DecreaseKey: climbing in MinHeap in O(log |V])
m Position in the heap (i.e. array index of element in the heap)?

m alternative (a): Store position at the nodes

m alternative (b): Hashtable of the nodes

m alternative (c): re-insert node each time after update-operation and mark
it as visited ("deleted") once extracted (Lazy Deletion)

Runtime

m |V|x ExtractMin: O(|V|log|V|)

B |F|x Insert or DecreaseKey: O(|E|log |V])
m 1x Init: O(|V])

m Overal: O(|E|log |V]).

General Weighted Graphs

Relaxing Step as with Dijkstra:

Relax(u, v)

if ds(v) > ds(u) + c¢(u,v) then
ds(v) + ds(u) + c(u,v)
ms(v) < u
return true

return false

Problem: cycles with negative weights can shorten the path, a
shortest path is not guaranteed to exist.

Observations

m Observation 1: Sub-paths of shortest paths are shortest paths.
Let p = (vo, ..., vx) be a shortest path from v, to v;. Then each of
the sub-paths p;; = (v;,...,v;) (0 <i < j < k) is a shortest path
from v; to v;.

Proof: if not, then one of the sub-paths could be shortened which
immediately leads to a contradiction.

m Observation: If there is a shortest path then it is simple, thus does

not provide a node more than once.
Immediate Consequence of observation 1.

Dynamic Programming Approach (Bellman)

Induction over number of edges d;|i, v]: Shortest path from s to v via
maximally ¢ edges.

ds[i,v] = min{d[i — 1, 0], (m)inE(dS[i — 1, u] + c(u,v))
u,v)e

ds[0, s] = 0,ds[0,v] = 0o Vv # s.

Dynamic Programming Approach (Bellman)

s v w i
0 |0 co co 00 o© /
1 |0 co 7 o0 —2 <~ ¢
. 0 o 5 c \‘
: S - w
n—110 - oo ...

Algorithm: Iterate over last row until the relaxation steps do not
provide any further changes, maximally n — 1 iterations. If still
changes, then there is no shortest path.

Algorithm Bellman-Ford(G, s)

Input: Graph G = (V, E, ¢), starting point s € V
Output: If return value true, minimal weights d for all shortest paths from s,
otherwise no shortest path.

d(v) <~ oco Vv e V;d(s) « 0
fori < 1to |V]| do
f + false
foreach (u,v) € FE do
f < fV Relax(u,v)

if f = false then return true

return false;

Runtime O(|E| - |V]).

Conclusion

n:=|V],m:=|E]

problem method runtime dense sparse

m € O(n?) m € O(n)
c=1 BFS O(m +n) O(n?) O(n)
DAG Top-Sort O(m + n) O(n?) O(n)
c>0 Dijkstra O((m +n)logn) O(n*logn) O(nlogn)
general Bellman-Ford O(m - n) O(n?) O(n?)

4. In-Class-Exercise (theoretical)

In-Class-Exercises: Longest Path in DAGs

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path
is incredibly hard! For directed graphs, nobody knows how to even efficiently find

paths of length > log® n.

In-Class-Exercises: Longest Path in DAGs

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path
is incredibly hard! For directed graphs, nobody knows how to even efficiently find
paths of length > log® n.

Exercise:
You are given a directed, acyclic graph (DAG) G = (V, E).
Design an O(|V| + | E|)-time algorithm to find the longest path.

In-Class-Exercises: Longest Path in DAGs

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path
is incredibly hard! For directed graphs, nobody knows how to even efficiently find
paths of length > log® n.

Exercise:

You are given a directed, acyclic graph (DAG) G = (V, E).
Design an O(|V| + | E|)-time algorithm to find the longest path.
Hint: G is acyclic, meaning you can topologically sort G.

In-Class-Exercises: Longest Path in DAGs

Solution:

Topological Sorting. Running time: O(|V'| + |E|).

In-Class-Exercises: Longest Path in DAGs

Solution:

Topological Sorting. Running time: O(|V'| + |E|).
Compute for each node all incoming edges: O(|V| + |E]).

In-Class-Exercises: Longest Path in DAGs

Solution:

Topological Sorting. Running time: O(|V'| + |E|).
Compute for each node all incoming edges: O(|V| + |E]).

Visit each node v in topological order and consider all incoming
edges: O(|V| + | E|).

In-Class-Exercises: Longest Path in DAGs

Solution:

Topological Sorting. Running time: O(|V'| + |E|).
Compute for each node all incoming edges: O(|V | + |E|).
Visit each node v in topological order and consider all incoming
edges: O(|V| + | E|).
0 no incoming edges,

(m?XE {dist[u] + c(u,v)} otherwise.
u,v)e

dist[v] =

In-Class-Exercises: Longest Path in DAGs

Solution:

Topological Sorting. Running time: O(|V'| + |E|).
Compute for each node all incoming edges: O(|V| + |E]).

Visit each node v in topological order and consider all incoming
edges: O(|V| + | E|).

' 0 no incoming edges,
dist[v] = (m?XE {dist[u] + c¢(u,v)} otherwise.
u,v)e

Store predecessor!

5. In-Class-Exercise (practical)

Shortest Path in a Maze

|\

iﬂ!.&// NS N\

——

BRES

‘/ //llaﬁlui

ﬁﬁ

\[

V///)

ﬁllrln|| Tk@wﬁ!

I////

e ———

////,,7,/177 APRTY

/ /,(// 1\ ///

30

Questions / Suggestions?

	Last Week: BFS with Lazy Deletion
	Adjacency List in Java, continued
	Repetition of Lecture
	Dijkstra's Algorithm
	Bellman-Ford Algorithm

	In-Class-Exercise (theoretical)
	In-Class-Exercise (practical)

