
Informatik II

Übung 11

FS 2019

1

Program Today

1 Last Week: BFS with Lazy Deletion

2 Adjacency List in Java, continued

3 Repetition of Lecture

Dijkstra’s Algorithm

Bellman-Ford Algorithm

4 In-Class-Exercise (theoretical)

5 In-Class-Exercise (practical)

2

BFS with Lazy Deletion
public void BFS2(int s) {

boolean visited[] = new boolean[V];
LinkedList<Integer> queue = new LinkedList<Integer>();
queue.add(s);
while (!queue.isEmpty()) {

int u = queue.poll();
if (!visited[u]) {

visited[u] = true;
System.out.print(u + " ");
for (int v : adj.get(u))

queue.add(v);
}

}
}

A node is pushed on
Queue once for each in-
coming edge.

Node marked as visited,
but its copies are not
immediately removed from Queue.
(“Lazy Deletion”)

3

BFS with Lazy Deletion
public void BFS2(int s) {

boolean visited[] = new boolean[V];
LinkedList<Integer> queue = new LinkedList<Integer>();
queue.add(s);
while (!queue.isEmpty()) {

int u = queue.poll();
if (!visited[u]) {

visited[u] = true;
System.out.print(u + " ");
for (int v : adj.get(u))

queue.add(v);
}

}
}

A node is pushed on
Queue once for each in-
coming edge.

Node marked as visited,
but its copies are not
immediately removed from Queue.
(“Lazy Deletion”)

3

BFS with Lazy Deletion
public void BFS2(int s) {

boolean visited[] = new boolean[V];
LinkedList<Integer> queue = new LinkedList<Integer>();
queue.add(s);
while (!queue.isEmpty()) {

int u = queue.poll();
if (!visited[u]) {

visited[u] = true;
System.out.print(u + " ");
for (int v : adj.get(u))

queue.add(v);
}

}
}

A node is pushed on
Queue once for each in-
coming edge.

Node marked as visited,
but its copies are not
immediately removed from Queue.
(“Lazy Deletion”)

3

Adjacency List Unweighted Graph
class Graph { // G = (V,E) as adjacency list

private int V; // number of vertices
private ArrayList<LinkedList<Integer>> adj; // adj. list
// Constructor
public Graph(int n) {

V = n;
adj = new ArrayList<LinkedList<Integer>>(V);
for (int i=0; i<V; ++i)

adj.add(i,new LinkedList<Integer>());
}
// Edge adder method
public void addEdge(int u, int v) {

adj.get(u).add(v);
}

}
4

Adjacency List weighted Graph
class Graph { // G = (V,E) as adjacency list

private int V; // number of vertices
private ArrayList<LinkedList<Pair>> adj; // adj. list
// Constructor
public Graph(int n) {

V = n;
adj = new ArrayList<LinkedList<Pair>>(V);
for (int i=0; i<V; ++i)

adj.add(i,new LinkedList<Pair>());
}
// Edge adder method, (u,v) has weight w
public void addEdge(int u, int v, int w) {

adj.get(u).add(new Pair(v,w));
}

}
5

Adjacency List weighted Graph
public class Pair implements Comparable<Pair> {

public int key;
public int value;
// Constructor
public Pair(int key, int value) {

this.key = key;
this.value = value;

}
@Override // we need this later...
public int compareTo(Pair other) {

return this.value−other.value;
}
// for general usage of pairs we would also need
// to provide equals(), hashCode(), ...

}
6

3. Repetition of Lecture

7

Weighted Graphs
Given: G = (V,E, c), c : E → R, s, t ∈ V .
Wanted: Length (weight) of a shortest path from s to t.
Path: p = 〈s = v0, v1, . . . , vk = t〉, (vi, vi+1) ∈ E (0 ≤ i < k)
Weight: c(p) :=

∑k−1
i=0 c((vi, vi+1)).

S

t2 1

3

2

1

Path with weight 9

8

Shortest Paths

Weight of a shortest path from u to v:

δ(u, v) =

{
∞ no path from u to v
min{c(p) : u p

 v} sonst

9

Ingredients of an Algorithm
Wanted: shortest paths from a starting node s.

Weight of the shortest path found so far

ds : V → R

At the beginning: ds[v] =∞ for all v ∈ V .
Goal: ds[v] = δ(s, v) for all v ∈ V .
Predecessor of a node

πs : V → V

Initially πs[v] undefined for each node v ∈ V
10

General Algorithm

1 Initialise ds and πs: ds[v] =∞, πs[v] = null for each v ∈ V
2 Set ds[s]← 0

3 Choose an edge (u, v) ∈ E
Relaxiere (u, v):

if ds[v] > d[u] + c(u, v) then
ds[v]← ds[u] + c(u, v)
πs[v]← u

4 Repeat 3 until nothing can be relaxed any more.
(until ds[v] ≤ ds[u] + c(u, v) ∀(u, v) ∈ E)

11

Assumption

s

a

b

c

d

e

2

3

2

6

1

3

1

1

All weights of G are positive.

12

Basic Idea

Set V of nodes is partitioned into
the set M of nodes for which a
shortest path from s is already known,
the set R =

⋃
v∈M N+(v) \M of

nodes where a shortest path is not yet
known but that are accessible directly
from M ,
the set U = V \ (M ∪R) of nodes that
have not yet been considered.

s

2

2

5

3

5

2

1

2

13

Induction

Induction over |M |: choose nodes from
R with smallest upper bound. Add r to M
and update R and U accordingly.

Correctness: if within the “wavefront” a
node with minimal weight w has been
found then no path over later nodes (pro-
viding weight ≥ d) can provide any im-
provement.

s

2

2

5

3

5

2

1

2

14

Algorithm Dijkstra(G, s)
Input: Positively weighted Graph G = (V,E, c), starting point s ∈ V ,
Output: Minimal weights d of the shortest paths and corresponding predecessor

node for each node.

foreach u ∈ V do
ds[u]←∞; πs[u]← null

ds[s]← 0; R← {s}
while R 6= ∅ do

u← ExtractMin(R)
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
R← R ∪ {v}

15

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

16

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞

s

M = {s}
R = {}

U = {a, b, c, d, e}

16

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞

ss

a

b

2

3

M = {s}
R = {a, b}
U = {c, d, e}

16

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞

ss

a

b

2

3

a c
8

M = {s, a}
R = {b, c}
U = {d, e}

16

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞

ss

a

b

2

3

a c
8

b d
4

M = {s, a, b}
R = {c, d}
U = {e}

16

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞

ss

a

b

2

3

a c
8

b d
4

d

e
5

7

M = {s, a, b, d}

R = {c, e}
U = {}

16

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞

ss

a

b

2

3

a c
8

b d
4

d

e
5

7

e

6

M = {s, a, b, d, e}

R = {c}
U = {}

16

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞

ss

a

b

2

3

a c
8

b d
4

d

e
5

7

e

6

c

M = {s, a, b, d, e, c}

R = {}
U = {}

16

Implementation: Data Structure for R?
Required operations:

Insert (add to R)
ExtractMin (over R) and DecreaseKey (Update in R)
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
if v ∈ R then

DecreaseKey(R, v) // Update of a d(v) in the heap of R
else

R← R ∪ {v} // Update of d(v) in the heap of R

MinHeap!
17

DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap (i.e. array index of element in the heap)?

alternative (a): Store position at the nodes
alternative (b): Hashtable of the nodes
alternative (c): re-insert node each time after update-operation and mark
it as visited ("deleted") once extracted (Lazy Deletion)

18

DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap (i.e. array index of element in the heap)?

alternative (a): Store position at the nodes

alternative (b): Hashtable of the nodes
alternative (c): re-insert node each time after update-operation and mark
it as visited ("deleted") once extracted (Lazy Deletion)

18

DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap (i.e. array index of element in the heap)?

alternative (a): Store position at the nodes
alternative (b): Hashtable of the nodes

alternative (c): re-insert node each time after update-operation and mark
it as visited ("deleted") once extracted (Lazy Deletion)

18

DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap (i.e. array index of element in the heap)?

alternative (a): Store position at the nodes
alternative (b): Hashtable of the nodes
alternative (c): re-insert node each time after update-operation and mark
it as visited ("deleted") once extracted (Lazy Deletion)

18

Runtime

|V |× ExtractMin: O(|V | log |V |)
|E|× Insert or DecreaseKey: O(|E| log |V |)
1× Init: O(|V |)
Overal: O(|E| log |V |).

19

General Weighted Graphs
Relaxing Step as with Dijkstra:

Relax(u, v)
if ds(v) > ds(u) + c(u, v) then

ds(v)← ds(u) + c(u, v)
πs(v)← u
return true

return false

s

u

v

ds(u)

ds(v)

Problem: cycles with negative weights can shorten the path, a
shortest path is not guaranteed to exist.

20

Observations

Observation 1: Sub-paths of shortest paths are shortest paths.
Let p = 〈v0, . . . , vk〉 be a shortest path from v0 to vk. Then each of
the sub-paths pij = 〈vi, . . . , vj〉 (0 ≤ i < j ≤ k) is a shortest path
from vi to vj.
Proof: if not, then one of the sub-paths could be shortened which
immediately leads to a contradiction.
Observation: If there is a shortest path then it is simple, thus does
not provide a node more than once.
Immediate Consequence of observation 1.

21

Dynamic Programming Approach (Bellman)

Induction over number of edges ds[i, v]: Shortest path from s to v via
maximally i edges.

ds[i, v] = min{ds[i− 1, v], min
(u,v)∈E

(ds[i− 1, u] + c(u, v))

ds[0, s] = 0, ds[0, v] =∞ ∀v 6= s.

22

Dynamic Programming Approach (Bellman)

s · · · v · · · w
0 0 ∞ ∞ ∞ ∞
1 0 ∞ 7 ∞ −2
...

n− 1 0 · · · · · · · · · · · ·

s

u

v

w

4

7

−2

Algorithm: Iterate over last row until the relaxation steps do not
provide any further changes, maximally n− 1 iterations. If still
changes, then there is no shortest path.

23

Algorithm Bellman-Ford(G, s)
Input: Graph G = (V,E, c), starting point s ∈ V
Output: If return value true, minimal weights d for all shortest paths from s,

otherwise no shortest path.

d(v)←∞ ∀v ∈ V ; d(s)← 0
for i← 1 to |V | do

f ← false
foreach (u, v) ∈ E do

f ← f ∨ Relax(u, v)

if f = false then return true

return false; // Negative Cycle!

Runtime O(|E| · |V |).
24

Conclusion

n := |V |,m := |E|

problem method runtime dense sparse
m ∈ O(n2) m ∈ O(n)

c ≡ 1 BFS O(m+ n) O(n2) O(n)
DAG Top-Sort O(m+ n) O(n2) O(n)
c ≥ 0 Dijkstra O((m+ n) log n) O(n2 log n) O(n log n)
general Bellman-Ford O(m · n) O(n3) O(n2)

25

4. In-Class-Exercise (theoretical)

26

In-Class-Exercises: Longest Path in DAGs

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path
is incredibly hard! For directed graphs, nobody knows how to even efficiently find
paths of length� log2 n.

Exercise:

You are given a directed, acyclic graph (DAG) G = (V,E).

Design an O(|V |+ |E|)-time algorithm to find the longest path.

Hint: G is acyclic, meaning you can topologically sort G.

27

In-Class-Exercises: Longest Path in DAGs

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path
is incredibly hard! For directed graphs, nobody knows how to even efficiently find
paths of length� log2 n.

Exercise:

You are given a directed, acyclic graph (DAG) G = (V,E).

Design an O(|V |+ |E|)-time algorithm to find the longest path.

Hint: G is acyclic, meaning you can topologically sort G.

27

In-Class-Exercises: Longest Path in DAGs

Finding a shortest path is easy (BFS, Dijkstra, Bellman-Ford). Finding a long path
is incredibly hard! For directed graphs, nobody knows how to even efficiently find
paths of length� log2 n.

Exercise:

You are given a directed, acyclic graph (DAG) G = (V,E).

Design an O(|V |+ |E|)-time algorithm to find the longest path.

Hint: G is acyclic, meaning you can topologically sort G.

27

In-Class-Exercises: Longest Path in DAGs

Solution:

1 Topological Sorting. Running time: O(|V |+ |E|).

2 Compute for each node all incoming edges: O(|V |+ |E|).
3 Visit each node v in topological order and consider all incoming

edges: O(|V |+ |E|).

dist[v] =

0 no incoming edges,
max
(u,v)∈E

{dist[u] + c(u, v)} otherwise.

Store predecessor!

28

In-Class-Exercises: Longest Path in DAGs

Solution:

1 Topological Sorting. Running time: O(|V |+ |E|).
2 Compute for each node all incoming edges: O(|V |+ |E|).

3 Visit each node v in topological order and consider all incoming
edges: O(|V |+ |E|).

dist[v] =

0 no incoming edges,
max
(u,v)∈E

{dist[u] + c(u, v)} otherwise.

Store predecessor!

28

In-Class-Exercises: Longest Path in DAGs

Solution:

1 Topological Sorting. Running time: O(|V |+ |E|).
2 Compute for each node all incoming edges: O(|V |+ |E|).
3 Visit each node v in topological order and consider all incoming

edges: O(|V |+ |E|).

dist[v] =

0 no incoming edges,
max
(u,v)∈E

{dist[u] + c(u, v)} otherwise.

Store predecessor!

28

In-Class-Exercises: Longest Path in DAGs

Solution:

1 Topological Sorting. Running time: O(|V |+ |E|).
2 Compute for each node all incoming edges: O(|V |+ |E|).
3 Visit each node v in topological order and consider all incoming

edges: O(|V |+ |E|).

dist[v] =

0 no incoming edges,
max
(u,v)∈E

{dist[u] + c(u, v)} otherwise.

Store predecessor!

28

In-Class-Exercises: Longest Path in DAGs

Solution:

1 Topological Sorting. Running time: O(|V |+ |E|).
2 Compute for each node all incoming edges: O(|V |+ |E|).
3 Visit each node v in topological order and consider all incoming

edges: O(|V |+ |E|).

dist[v] =

0 no incoming edges,
max
(u,v)∈E

{dist[u] + c(u, v)} otherwise.

Store predecessor!

28

5. In-Class-Exercise (practical)

29

Shortest Path in a Maze

30

Questions / Suggestions?

31

	Last Week: BFS with Lazy Deletion
	Adjacency List in Java, continued
	Repetition of Lecture
	Dijkstra's Algorithm
	Bellman-Ford Algorithm

	In-Class-Exercise (theoretical)
	In-Class-Exercise (practical)

