
Informatik II

Übung 10

FS 2019

1

Program Today

1 Repetition Lectures: Adjacency Lists

2 Breadth-First-Search BFS

3 In-Class-Exercise

2

Adjacency List
class Graph { // G = (V,E) as adjacency list

private int V; // number of vertices
private ArrayList<LinkedList<Integer>> adj; // adj. list
// Constructor
public Graph(int n) {

V = n;
adj = new ArrayList<LinkedList<Integer>>(V);
for (int i=0; i<V; ++i)

adj.add(i,new LinkedList<Integer>());
}
// Edge adder method
public void addEdge(int u,int v) {

adj.get(u).add(v);
}

}
3

Adjacency List

Properties:

ArrayList
Get element in constant time.

LinkedList
Add element in constant time.
Iterate over whole list in linear time.

- addEdge(u,v) = adj.get(u).add(v) runs in constant time O(1).

- for (int v : adj.get(u)) runs in time O(deg+(u)).

4

Adjacency List

Properties:

ArrayList
Get element in constant time.

LinkedList
Add element in constant time.
Iterate over whole list in linear time.

- addEdge(u,v) = adj.get(u).add(v) runs in constant time O(1).

- for (int v : adj.get(u)) runs in time O(deg+(u)).

4

Adjacency List

Properties:

ArrayList
Get element in constant time.

LinkedList
Add element in constant time.
Iterate over whole list in linear time.

- addEdge(u,v) = adj.get(u).add(v) runs in constant time O(1).

- for (int v : adj.get(u)) runs in time O(deg+(u)).

4

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V

Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor

Θ(n2) Θ(n)

(u, v) ∈ E ?

Θ(1) Θ(deg+ v)

Insert edge

Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

5

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n)

Θ(deg+ v)

find v ∈ V without neighbour/successor

Θ(n2) Θ(n)

(u, v) ∈ E ?

Θ(1) Θ(deg+ v)

Insert edge

Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

5

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor

Θ(n2) Θ(n)

(u, v) ∈ E ?

Θ(1) Θ(deg+ v)

Insert edge

Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

5

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2)

Θ(n)

(u, v) ∈ E ?

Θ(1) Θ(deg+ v)

Insert edge

Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

5

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2) Θ(n)

(u, v) ∈ E ?

Θ(1) Θ(deg+ v)

Insert edge

Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

5

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2) Θ(n)

(u, v) ∈ E ? Θ(1)

Θ(deg+ v)

Insert edge

Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

5

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2) Θ(n)

(u, v) ∈ E ? Θ(1) Θ(deg+ v)

Insert edge

Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

5

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2) Θ(n)

(u, v) ∈ E ? Θ(1) Θ(deg+ v)

Insert edge Θ(1)

Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

5

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2) Θ(n)

(u, v) ∈ E ? Θ(1) Θ(deg+ v)

Insert edge Θ(1) Θ(1)

Delete edge

Θ(1) Θ(deg+ v)

5

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2) Θ(n)

(u, v) ∈ E ? Θ(1) Θ(deg+ v)

Insert edge Θ(1) Θ(1)

Delete edge Θ(1)

Θ(deg+ v)

5

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2) Θ(n)

(u, v) ∈ E ? Θ(1) Θ(deg+ v)

Insert edge Θ(1) Θ(1)

Delete edge Θ(1) Θ(deg+ v)

5

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

distance 0

distance 1

distance 2

a

b d e

c f

a

b d e

c f

6

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a

b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

distance 0

distance 1

distance 2

a

b d e

c f

a

b d e

c f

6

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

distance 0

distance 1

distance 2

a

b d e

c

f

a

b

d e

c f

6

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d

e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

distance 0

distance 1

distance 2

a

b d e

c

f

a

b d

e

c f

6

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

distance 0

distance 1

distance 2

a

b d e

c f

a

b d e

c f

6

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

distance 0

distance 1

distance 2

a

b d e

c f

a

b d e

c

f

6

Breadth-First-Search BFS

BFS starting from a:

a b c

d e f

g h i

a b

d e

c

f

BFS-Tree: Distances and Parents

a

b ed

c f

distance 0

distance 1

distance 2

a

b d e

c f

a

b d e

c f

6

Quiz

In how many ways can the following directed graphs be topologically
sorted each?

A B

C D
number sortings

?

A B

C D
number sortings

?

A B

C D
number sortings

?

7

Quiz

In how many ways can the following directed graphs be topologically
sorted each?

A B

C D
number sortings

2

A B

C D
number sortings

1

A B

C D
number sortings

0

7

In-Class-Exercises: Route planning

Exercise: You are given

a directed, unweighted Graph G = (V,E),
represented by an adjacency list,
and a designated node t ∈ V (e.g., an emergency exit).

Design an algorithm,

which computes for each node u ∈ V an outgoing edge in
direction of a shortest path to t.
and has a running time of O(|V | + |E|).

8

In-Class-Exercises: Route planning

Solution:

1 Make a copy of the graph with edges having reverse direction:
GT = (V,ET), where ET = {(v, u) | (u, v) ∈ E}.
Running time: O(|V | + |E|).

2 Start a breadth-first search of GT , starting from t,
and store all edges of the BFS-Tree.
Running time: O(|V | + |ET |) = O(|V | + |E|).

3 Assign the stored edges (in reverse direction)
to the discovered nodes. Running time: O(|V |).

9

Questions / Suggestions?

10

	Repetition Lectures: Adjacency Lists
	Breadth-First-Search BFS
	In-Class-Exercise

