
13. Shortest Paths

299

River Crossing (Missionaries and Cannibals)
Problem: Three cannibals and three missionaries are standing at a
river bank. The available boat can carry two people. At no time may
at any place (banks or boat) be more cannibals than missionaries.
How can the missionaries and cannibals cross the river as fast as
possible? 8

K K K

M M M
B

8There are slight variations of this problem. It is equivalent to the jealous husbands problem.
300

Problem as Graph

Enumerate permitted configurations as nodes and connect them
with an edge, when a crossing is allowed. The problem then
becomes a shortest path problem.

Example

links rechts
Missionare 3 0
Kannibalen 3 0
Boot x

links rechts
Missionare 2 1
Kannibalen 2 1
Boot x

Überfahrt möglich

6 Personen am linken Ufer 4 Personen am linken Ufer

301

The whole problem as a graph

3 0
3 0
x

3 0
2 1
x

3 0
1 2
x

3 0
0 3
x

2 1
2 1
x

1 2
1 2
x

0 3
1 2
x

0 3
2 1
x

0 3
3 0
x

6 5 4 3 4 2 1 2 3

3 0
2 1

x

3 0
1 2

x

3 0
0 3

x

2 1
2 1

x

1 2
1 2

x

0 3
1 2

x

0 3
2 1

x

0 3
3 0

x

0 3
0 3

x

5 4 3 4 2 1 2 3 0

302

Another Example: Mystic Square

Want to find the fastest solution for

2 4 6
7 5 3
1 8

1 2 3
4 5 6
7 8

303

Problem as Graph
1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

1 2 3
4 5 6

7 8

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

1 2 3
4 8 5
7 6

1 2 3
4 5

7 8 6

2 4 6
7 5 3
1 8

304

Route Finding
Provided cities A - Z and Distances between cities.

A

B

C

D

E

F

G

H

I Z

3

1

6

4

1

3

5

7

1

4 5

1

4

1

7 4

3
8

5

10

5

What is the shortest path from A to Z?
305

Simplest Case
Constant edge weight 1 (wlog)

Solution: Breadth First Search

S

t

306

Weighted Graphs
Given: G = (V,E, c), c : E → R, s, t ∈ V .
Wanted: Length (weight) of a shortest path from s to t.
Path: p = 〈s = v0, v1, . . . , vk = t〉, (vi, vi+1) ∈ E (0 ≤ i < k)
Weight: c(p) :=

∑k−1
i=0 c((vi, vi+1)).

S

t2 1

3

2

1

Path with weight 9

307

Prelliminary Assumption

s

a

b

c

d

e

2

3

2

6

1

3

1

1

All weights of G are positive.

308

Shortest Paths

Weight of a shortest path from u to v:

δ(u, v) =

{
∞ no path from u to ävä
min{c(p) : u p v} sonst

309

Ingredients of an Algorithm
Wanted: shortest paths from a starting node s.

Weight of the shortest path found so far

ds : V → R

At the beginning: ds[v] =∞ for all v ∈ V .
Goal: ds[v] = δ(s, v) for all v ∈ V .
Predecessor of a node

πs : V → R

Zu Beginn πs[v] undefiniert für jeden Knoten v ∈ V
310

General Algorithm

1 Initialise ds and πs
2 Set ds[s]← 0

3 Choose an edge (u, v) ∈ E
Relaxiere (u, v):

if ds[v] > d[u] + c(u, v) then
ds[v]← ds[u] + c(u, v)
πs[v]← u

4 Repeat 3 until nothing can be relaxed any more.
(until ds[v] ≤ ds[u] + c(u, v) ∀(u, v) ∈ E)

311

Triangle Inequality

For all s, u, v ∈ V :

δ(s, v) ≤ δ(s, u) + δ(u, v)

(A shortest path from s to v cannot be longer than a shortest path from s to v via u)

312

It is Safe to Relax

At any time in the algorithm above it holds

ds[v] ≥ δ(s, v) ∀v ∈ V

Inductive:

δ(S, v) ≤ δ(S, u) + δ(u, v) [Triangle Inequality].
δ(s, u) ≤ ds[u] [Induction Hypothesis].
δ(u, v) ≤ c(u, v) [Minimality of δ]

⇒ δ(S, v) ≤ ds[u] + c(u, v)

313

Observation (Dijkstra)

s

u

v

w

4

7

2

t
0

4

7

2

upper bounds

Smallest upper bound
global minimum!
cannot be relaxed further

314

Basic Idea

Set V of nodes is partitioned into
the set M of nodes for which a
shortest path from s is already known,
the set R =

⋃
v∈M N+(v) \M of

nodes where a shortest path is not yet
known but that are accessible directly
from M ,
the set U = V \ (M ∪R) of nodes that
have not yet been considered.

s

2

2

5

3

5

2

1

2

315

Induction

Induction over |M |: choose nodes from
R with smallest upper bound. Add r to M
and update R and U accordingly.

Correctness: if within the “wavefront” a
node with minimal weight has been found
then no path with greater weight over dif-
ferent nodes can provide any improve-
ment.

s

2

2

5

3

5

2

1

2

316

Algorithm Dijkstra(G, s) [formal]

Input : Positively weighted Graph G = (V,E, c), starting point s ∈ V ,
Output : Minimal weights d of the shortest paths.

M = {s}; R = N+(s), U = V \R
d(s)← 0; d(u)←∞ ∀u 6= s
while R 6= ∅ do

r ← argminr∈R minm∈N−(r)∩M d(m) + c(m, r)
d(r)← minm∈N−(r)∩M d(m) + c(m, r)
M ←M ∪ {r}
R← R− {r} ∪N+(r) \M

return d

317

Algorithmus Dijkstra

Initial: PL(n)←∞ für alle Knoten.

Set PL(s)← 0

Start with M = {s}. Set k ← s.
While a new node k is added and this is not the target node

1 For each neighbour node n of k:
compute path length x to n via k
If PL(n) =∞, than add n to R
If x < PL(n) <∞, then set PL(n)← x and adapt R .

2 Choose as new node k the node with smallest path length in R.

318

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

a c
8

M = {s, a}
R = {b, c}
U = {d, e}

319

Implementation: Naive Variant

Find minimum: traverse all edges (u, v) for u ∈M, v ∈ R .
Overal costs: O(|V | · |E|)

320

Implementation: Better Variant

Update of all outgoing edges when inserting new w in M :
foreach v ∈ N+(w) do

if d(w) + c(w, v) < d(v) then
d(v)← d(w) + c(w, v)

Costs of updates: O(|E|), Find minima: O(|V |2), overal costs
O(|V |2)

321

Implementation: Data Structure for R?
Required operations:

Insert (add to R)
ExtractMin (over R) and DecreaseKey (Update in R)
foreach v ∈ N+(m) do

if d(m) + c(m, v) < d(v) then
d(v)← d(m) + c(m, v)
if v ∈ R then

DecreaseKey(R, v) // Update of a d(v) in the heap of R
else

R← R ∪ {v} // Update of d(v) in the heap of R

MinHeap!
322

DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap?

alternative (a): Store position at the nodes
alternative (b): Hashtable of the nodes
alterantive (c): re-insert node after update-operation and mark it "deleted"
once extracted (Lazy Deletion)

323

Runtime

|V |× ExtractMin: O(|V | log |V |)
|E|× Insert or DecreaseKey: O(|E| log |V |)
1× Init: O(|V |)
Overal: O(|E| log |V |).

324

Reconstruct shortest Path

Memorize best predecessor during the update step in the
algorithm above. Store it with the node or in a separate data
structure.
Reconstruct best path by traversing backwards via best
predecessor

325

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

a c
8

b d
4

M = {s, a, b}
R = {c, d}
U = {e}

326

General Weighted Graphs

Relaxing Step as with Dijkstra:

Relax(u, v) (u, v ∈ V , (u, v) ∈ E)
if ds(v) > ds(u) + c(u, v) then

ds(v)← ds(u) + c(u, v)
return true

return false
s

u

v

ds(u)

ds(v)

Problem: cycles with negative weights can shorten the path, a
shortest path is not guaranteed to exist.

327

Observations

Observation 1: Sub-paths of shortest paths are shortest paths.
Let p = 〈v0, . . . , vk〉 be a shortest path from v0 to vk. Then each of
the sub-paths pij = 〈vi, . . . , vj〉 (0 ≤ i < j ≤ k) is a shortest path
from vi to vj.
Proof: if not, then one of the sub-paths could be shortened which
immediately leads to a contradiction.
Observation: If there is a shortest path then it is simple, thus does
not provide a node more than once.
Immediate Consequence of observation 1.

328

Dynamic Programming Approach (Bellman)

Induction over number of edges ds[i, v]: Shortest path from s to v via
maximally i edges.

ds[i, v] = min{ds[i− 1, v], min
(u,v)∈E

(ds[i− 1, u] + c(u, v))

ds[0, s] = 0, ds[0, v] =∞ ∀v 6= s.

329

Dynamic Programming Approach (Bellman)

s · · · v · · · w
0 0 ∞ ∞ ∞ ∞
1 0 ∞ 7 ∞ −2
...

n− 1 0 · · · · · · · · · · · ·

s

u

v

w

4

7

−2

Algorithm: Iterate over last row until the relaxation steps do not
provide any further changes, maximally n− 1 iterations. If still
changes, then there is no shortest path.

330

Algorithm Bellman-Ford(G, s)
Input : Graph G = (V,E, c), starting point s ∈ V
Output : If return value true, minimal weights d for all shortest paths from s,

otherwise no shortest path.

d(v)←∞ ∀v ∈ V ; d(s)← 0
for i← 1 to |V | do

f ← false
foreach (u, v) ∈ E do

f ← f ∨ Relax(u, v)

if f = false then return true

return false;

Runtime O(|E| · |V |).
331

