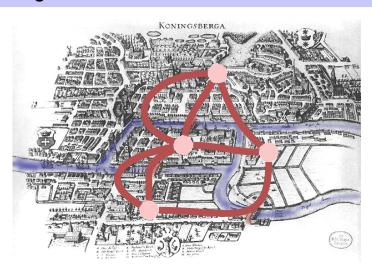
12. Graphen

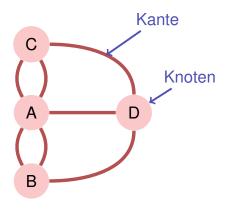
Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap. 9.1 - 9.4, Cormen et al, Kap. 22

Königsberg 1736



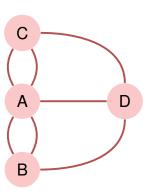
254

[Multi]Graph



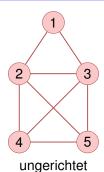
Zyklen

- Gibt es einen Rundweg durch die Stadt (den Graphen), welcher jede Brücke (jede Kante) genau einmal benutzt?
- Euler (1736): nein.
- Solcher Rundweg (*Zyklus*) heisst *Eulerscher Kreis*.
- Eulerzyklus ⇔ jeder Knoten hat gerade Anzahl Kanten (jeder Knoten hat einen geraden Grad).

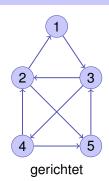


[&]quot;⇒" ist klar, "←" ist etwas schwieriger

Notation



$$\begin{array}{ll} V = & \{1,2,3,4,5\} \\ E = & \{\{1,2\},\{1,3\},\{2,3\},\{2,4\}, \\ & \{2,5\},\{3,4\},\{3,5\},\{4,5\}\} \end{array} \qquad \begin{array}{ll} V = & \{1,2,3,4,5\} \\ E = & \{(1,3),(2,1),(2,5),(3,2), \\ & (3,4),(4,2),(4,5),(5,3)\} \end{array}$$



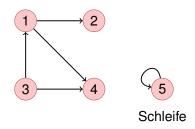
$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1, 3), (2, 1), (2, 5), (3, 2), (4, 5)\}$$

$$(3, 4), (4, 2), (4, 5), (5, 3)\}$$

Notation

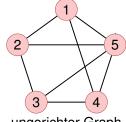
Ein *gerichteter Graph* besteht aus einer Menge $V = \{v_1, \dots, v_n\}$ von Knoten (*Vertices*) und einer Menge $E \subseteq V \times V$ von Kanten (Edges). Gleiche Kanten dürfen nicht mehrfach enthalten sein.



258

Notation

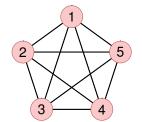
Ein *ungerichteter Graph* besteht aus einer Menge $V = \{v_1, \dots, v_n\}$ von Knoten und einer Menge $E \subseteq \{\{u,v\}|u,v\in V\}$ von Kanten. Kanten dürfen nicht mehrfach enthalten sein.8



ungerichter Graph

Notation

Ein ungerichteter Graph G = (V, E) ohne Schleifen in dem jeder Knoten mit jedem anderen Knoten durch eine Kante verbunden ist, heisst vollständig.

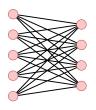


ein vollständiger ungerichter Graph

⁸Im Gegensatz zum Eingangsbeispiel – dann Multigraph genannt.

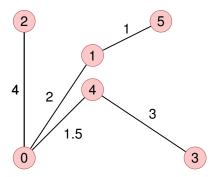
Notation

Ein Graph, bei dem V so in disjunkte U und W aufgeteilt werden kann, dass alle $e \in E$ einen Knoten in U und einen in W haben heisst *bipartit*.



Notation

Ein *gewichteter Graph* G = (V, E, c) ist ein Graph G = (V, E) mit einer *Kantengewichtsfunktion* $c: E \to \mathbb{R}$. c(e) heisst *Gewicht* der Kante e.

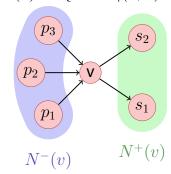


262

Notation

Für gerichtete Graphen G = (V, E)

- $w \in V$ heisst *adjazent* zu $v \in V$, falls $(v, w) \in E$
- $\qquad \textbf{Vorgängermenge} \ \text{von} \ v \in V \text{:} \ N^-(v) := \{u \in V | (u,v) \in E\}.$ Nachfolgermenge: $N^+(v) := \{u \in V | (v, u) \in E\}$



Notation

Für gerichtete Graphen G = (V, E)

Eingangsgrad: $\deg^-(v) = |N^-(v)|$, Ausgangsgrad: $\deg^+(v) = |N^+(v)|$

$$\deg^-(v) = 3, \deg^+(v) = 2$$
 $\deg^-(w) = 1, \deg^+(w) = 1$

$$\deg^-(w) = 1, \deg^+(w) = 1$$

Notation

Für ungerichtete Graphen G = (V, E):

- $w \in V$ heisst *adjazent* zu $v \in V$, falls $\{v, w\} \in E$
- Nachbarschaft von $v \in V$: $N(v) = \{w \in V | \{v, w\} \in E\}$
- Grad von v: deg(v) = |N(v)| mit Spezialfall Schleifen: erhöhen Grad um 2.

$$\deg(w) = 2$$

Beziehung zwischen Knotengraden und Kantenzahl

In jedem Graphen G = (V, E) gilt

- $\sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v) = |E|$, falls G gerichtet
- $\sum_{v \in V} \deg(v) = 2|E|$, falls G ungerichtet.

Wege

- *Weg*: Sequenz von Knoten $\langle v_1, \ldots, v_{k+1} \rangle$ so dass für jedes $i \in \{1 \ldots k\}$ eine Kante von v_i nach v_{i+1} existiert.
- **Länge** des Weges: Anzahl enthaltene Kanten k.
- *Gewicht* des Weges (in gewichteten Graphen): $\sum_{i=1}^k c((v_i, v_{i+1}))$ (bzw. $\sum_{i=1}^k c(\{v_i, v_{i+1}\})$)
- Pfad (auch: einfacher Pfad): Weg der keinen Knoten mehrfach verwendet.

Zusammenhang

- Ungerichteter Graph heisst *zusammenhängend*, wenn für jedes Paar $v, w \in V$ ein verbindender Weg existiert.
- Gerichteter Graph heisst *stark zusammenhängend*, wenn für jedes Paar $v, w \in V$ ein verbindender Weg existiert.
- Gerichteter Graph heisst *schwach zusammenhängend*, wenn der entsprechende ungerichtete Graph zusammenhängend ist.

26

Einfache Beobachtungen

Zyklen

- Allgemein: $0 \le |E| \in \mathcal{O}(|V|^2)$
- **Z**usammenhängender Graph: $|E| \in \Omega(|V|)$
- Vollständiger Graph: $|E| = \frac{|V| \cdot (|V|-1)}{2}$ (ungerichtet)
- Maximal $|E| = |V|^2$ (gerichtet), $|E| = \frac{|V| \cdot (|V| + 1)}{2}$ (ungerichtet)

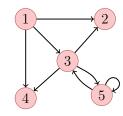
- **Zyklus**: Weg $\langle v_1, \ldots, v_{k+1} \rangle$ mit $v_1 = v_{k+1}$
- **Kreis**: Zyklus mit paarweise verschiedenen v_1, \ldots, v_k , welcher keine Kante mehrfach verwendet.
- Kreisfrei (azyklisch): Graph ohne jegliche Kreise.

Eine Folgerung: Ungerichtete Graphen können keinen Kreis der Länge 2 enthalten (Schleifen haben Länge 1).

270

Repräsentation mit Matrix

Graph G = (V, E) mit Knotenmenge v_1, \ldots, v_n gespeichert als *Adjazenzmatrix* $A_G = (a_{ij})_{1 \le i,j \le n}$ mit Einträgen aus $\{0,1\}$. $a_{ij} = 1$ genau dann wenn Kante von v_i nach v_i .

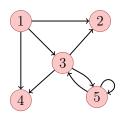


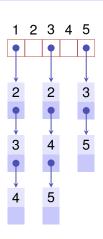
$$\left(\begin{array}{cccccc}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)$$

Speicherbedarf $\Theta(|V|^2)$. A_G ist symmetrisch, wenn G ungerichtet.

Repräsentation mit Liste

Viele Graphen G = (V, E) mit Knotenmenge v_1, \ldots, v_n haben deutlich weniger als n^2 Kanten. Repräsentation mit Ad*jazenzliste*: Array $A[1], \ldots, A[n], A_i$ enthält verkettete Liste aller Knoten in $N^+(v_i)$.



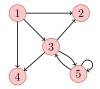


Speicherbedarf $\Theta(|V|+|E|)$.

Laufzeiten einfacher Operationen

Operation	Matrix	Liste
${\bf Nachbarn/Nachfolger\ von\ }v\in V\ {\bf finden}$	$\Theta(n)$	$\Theta(\deg^+ v)$
$v \in V \text{ ohne Nachbar/Nachfolger finden}$	$\Theta(n^2)$	$\Theta(n)$
$(u,v) \in E$?	$\Theta(1)$	$\Theta(\deg^+ v)$
Kante einfügen	$\Theta(1)$	$\Theta(1)$
Kante löschen	$\Theta(1)$	$\Theta(\deg^+ v)$

Adjazenzmatrizen multipliziert



$$B := A_G^2 = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 2 \end{pmatrix}$$

274

Interpretation

Theorem

Sei G=(V,E) ein Graph und $k\in\mathbb{N}$. Dann gibt das Element $a_{i,j}^{(k)}$ der Matrix $(a_{i,j}^{(k)})_{1\leq i,j\leq n}=(A_G)^k$ die Anzahl der Wege mit Länge k von v_i nach v_j an.

Beweis

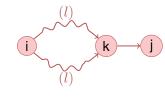
Per Induktion.

Anfang: Klar für k = 1. $a_{i,j} = a_{i,j}^{(1)}$.

Hypothese: Aussage wahr für alle $k \leq l$

Schritt ($l \rightarrow l+1$):

$$a_{i,j}^{(l+1)} = \sum_{k=1}^{n} a_{i,k}^{(l)} \cdot a_{k,j}$$



 $a_{k,j}=1$ g.d.w. Kante von k nach j, 0 sonst. Summe zählt die Anzahl Wege der Länge l vom Knoten v_i zu allen Knoten v_k welche direkte Verbindung zu Knoten v_j haben, also alle Wege der Länge l+1.

Beispiel: Kürzester Weg

Frage: existiert Weg von i nach j? Wie lang ist der kürzeste Weg? *Antwort:* Potenziere A_G bis für ein k < n gilt $a_{i,j}^{(k)} > 0$. k gibt die Weglänge des kürzesten Weges. Wenn $a_{i,j}^{(k)} = 0$ für alle $1 \le k < n$, so gibt es keinen Weg von i nach j.

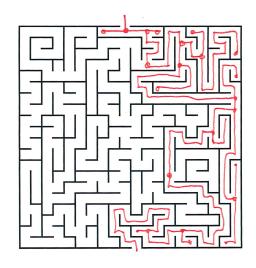
Beispiel: Anzahl Dreiecke

Frage: Wie viele Dreieckswege enthält ein ungerichteter Graph?

Antwort: Entferne alle Zyklen (Diagonaleinträge). Berechne A_G^3 . $a_{ii}^{(3)}$ bestimmt die Anzahl Wege der Länge 3, die i enthalten. Es gibt 6 verschiedene Permutationen eines Dreicksweges. Damit Anzahl Dreiecke: $\sum_{i=1}^{n} a_{ii}^{(3)}/6$.

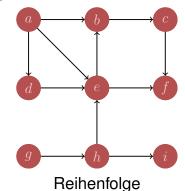
278

Tiefensuche



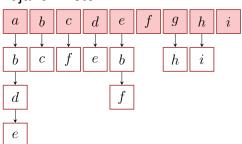
Graphen Traversieren: Tiefensuche

Verfolge zuerst Pfad in die Tiefe, bis nichts mehr besucht werden kann.



a, b, c, f, d, e, g, h, i

Adjazenzliste



Algorithmus Tiefensuche DFS-Visit(G, v)

```
\begin{array}{l} \textbf{Input:} \; \mathsf{Graph} \; G = (V,E), \; \mathsf{Knoten} \; v. \\ \\ \mathsf{Markiere} \; v \; \mathsf{als} \; \mathsf{besucht} \\ \\ \mathsf{foreach} \; w \in N^+(v) \; \mathsf{do} \\ \\ & | \; \mathsf{if} \; \neg (w \; \mathsf{besucht}) \; \mathsf{then} \\ \\ & | \; \mathsf{DFS-Visit}(G,w) \end{array}
```

Tiefensuche ab Knoten v. Laufzeit (ohne Rekursion): $\Theta(\deg^+ v)$

Algorithmus Tiefensuche DFS-Visit(*G***)**

```
\begin{array}{l} \textbf{Input}: \ \mathsf{Graph} \ G = (V,E) \\ \textbf{foreach} \ v \in V \ \textbf{do} \\ \  \  \, \big | \  \  \, \mathsf{Markiere} \ v \ \mathsf{als} \ \mathsf{nicht} \ \mathsf{besucht} \\ \textbf{foreach} \ v \in V \ \textbf{do} \\ \  \  \, \big | \  \  \, \mathsf{if} \  \, \neg (v \ \mathsf{besucht}) \ \textbf{then} \\ \  \  \, \big | \  \  \, \mathsf{DFS-Visit}(\mathsf{G,v}) \end{array}
```

Tiefensuche für alle Knoten eines Graphen. Laufzeit $\Theta(|V| + \sum_{v \in V} (\deg^+(v) + 1)) = \Theta(|V| + |E|).$

282

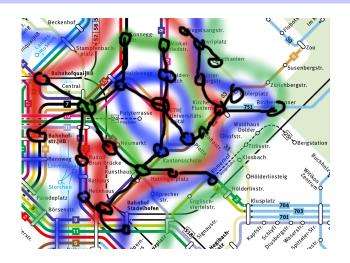
Iteratives DFS-Visit(G, v)

```
\begin{array}{l} \textbf{Input}: \ \mathsf{Graph} \ G = (V, E) \\ \mathsf{Stack} \ S \leftarrow \emptyset; \ \mathsf{push}(S, v) \\ \textbf{while} \ S \neq \emptyset \ \textbf{do} \\ & w \leftarrow \mathsf{pop}(S) \\ & \mathbf{if} \ \neg (w \ \mathsf{besucht}) \ \textbf{then} \\ & \ \mathsf{Markiere} \ w \ \mathsf{besucht} \\ & \ \mathsf{foreach} \ (w, c) \in E \ \textbf{do} \ / / \ (\mathsf{ggfs} \ \mathsf{umgekehrt} \ \mathsf{einfügen}) \\ & \ \mathsf{if} \ \neg (c \ \mathsf{besucht}) \ \textbf{then} \\ & \ \mathsf{push}(S, c) \\ \end{array}
```

Stapelgrösse bis zu |E|, für jeden Knoten maximal Extraaufwand $\Theta(\deg^+(w)+1)$. Gesamt: $\Theta(|V|+|E|)$

Mit Aufruf aus obigem Rahmenprogramm: $\Theta(|V| + |E|)$

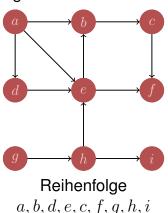
Breitensuche



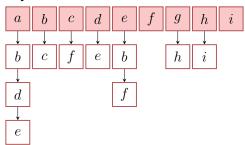
...

Graphen Traversieren: Breitensuche

Verfolge zuerst Pfad in die Breite, gehe dann in die Tiefe.



Adjazenzliste



Iteratives BFS-Visit(G, v)

$$\begin{aligned} \textbf{Input:} & \text{Graph } G = (V, E) \\ & \text{Queue } Q \leftarrow \emptyset \\ & \text{Markiere } v \text{ aktiv} \\ & \text{enqueue}(Q, v) \\ & \textbf{while } Q \neq \emptyset \text{ do} \\ & w \leftarrow \text{dequeue}(Q) \\ & \text{Markiere } w \text{ besucht} \\ & \textbf{foreach } c \in N^+(w) \text{ do} \\ & & \text{if } \neg(c \text{ besucht} \lor c \text{ aktiv}) \text{ then} \\ & & \text{Markiere } c \text{ aktiv} \\ & & \text{enqueue}(Q, c) \end{aligned}$$

- Algorithmus kommt mit $\mathcal{O}(|V|)$ Extraplatz aus.
- Gesamtlaufzeit mit Rahmenprogramm: $\Theta(|V| + |E|)$.

Topologisches Sortieren

	⊞ •• · · · · · · · · · · · · · · · · · ·										
file fx Insert unction		Logical Text Date & Look	ata Review View Q 0 0 00 oup & Math & More ence - Trig - Functions -	☐ ☐ Define	Formula - Sin Trace Formula - OS Trace from Selection IS Rem	ell me what you want to do Precedents Show Formulas Dependents Error Checking ove Arrows - Evaluate Formu Formula Auditing		Calculation Calculation			
6	A	В	C		D	E		F	G	н	1
1		Task 1	Task 2	Ta	ısk 3	Task 4	Tota	d.		Note	
2	TOTAL	•	8	8	10	10		36			
3	Arleen	•	4	5	6	9	-	24		4	
4	Hans	•	1	3	2	3	-	9		1.5	
5	Mike	•	2	7	5	4	-	18	$\overline{}$	3	
6	Selina	•	6	5	8	2	-	21		3.5	
7											
8						Durchschnitt	*	18		* 3	
9											
10											
11											
12											
13											
14											

Auswertungsreihenfolge?

Topologische Sortierung

Topologische Sortierung eines azyklischen gerichteten Graphen G = (V, E):

Bijektive Abbildung

ord :
$$V \to \{1, ..., |V|\}$$

so dass

286

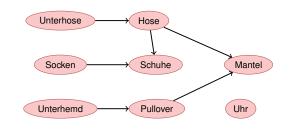
$$\operatorname{ord}(v) < \operatorname{ord}(w) \ \forall \ (v, w) \in E.$$

Identifizieren Wert i mit dem Element $v_i := \operatorname{ord}^{-1}(i)$. Topologische Sortierung $\widehat{=} \langle v_1, \dots, v_{|V|} \rangle$.

(Gegen-)Beispiele

2 5

Zyklischer Graph: kann nicht topologisch sortiert werden.



Eine mögliche Topologische Sortierung des Graphen: Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe

Beobachtung

Theorem

Ein gerichteter Graph G=(V,E) besitzt genau dann eine topologische Sortierung, wenn er kreisfrei ist

Beweis " \Rightarrow ": Wenn G einen Kreis besitzt, so besitzt er keine topologische Sortierung. Denn in einem Kreis $\langle v_{i_1}, \ldots, v_{i_m} \rangle$ gälte $v_{i_1} < \cdots < v_{i_m} < v_{i_1}$.

Induktiver Beweis Gegenrichtung

- Anfang (n = 1): Graph mit einem Knoten ohne Schleife ist topologisch sortierbar. Setze $\operatorname{ord}(v_1) = 1$.
- Hypothese: Graph mit *n* Knoten kann topologisch sortiert werden.
- \blacksquare Schritt ($n \rightarrow n+1$):
 - If G enthält einen Knoten v_q mit Eingangsgrad $\deg^-(v_q)=0$. Andernfalls verfolge iterativ Kanten rückwärts nach spätestens n+1 Iterationen würde man einen Knoten besuchen, welcher bereits besucht wurde. Widerspruch zur Zyklenfreiheit.
 - **2** Graph ohne Knoten v_q und ohne dessen Eingangskanten kann nach Hypothese topologisch sortiert werden. Verwende diese Sortierung, setze $\operatorname{ord}(v_i) \leftarrow \operatorname{ord}(v_i) + 1$ für alle $i \neq q$ und setze $\operatorname{ord}(v_q) \leftarrow 1$.

Algorithmus, vorläufiger Entwurf

Graph G = (V, E). $d \leftarrow 1$

- Traversiere von beliebigem Knoten rückwärts bis ein Knoten v_q mit Eingangsgrad 0 gefunden ist.
- Wird kein Knoten mit Eingangsgrad 0 gefunden (n Schritte), dann Zyklus gefunden.
- **Setze** ord $(v_q) \leftarrow d$.
- Interver v_q und seine Kanten von G.
- Wenn $V \neq \emptyset$, dann $d \leftarrow d + 1$, gehe zu Schritt 1.

Laufzeit im schlechtesten Fall: $\Theta(|V|^2)$.

Verbeserung

Idee?

Berechne die Eingangsgrade der Knoten im Voraus und durchlaufe dann jeweils die Knoten mit Eingangsgrad 0 die Eingangsgrade der Nachfolgeknoten korrigierend.

Algorithmus Topological-Sort(*G*)

```
Input: Graph G=(V,E). Output: Topologische Sortierung ord Stack S \leftarrow \emptyset foreach v \in V do A[v] \leftarrow 0 foreach (v,w) \in E do A[w] \leftarrow A[w] + 1 // Eingangsgrade berechnen foreach v \in V with A[v] = 0 do push(S,v) // Merke Nodes mit Eingangsgrad 0 i \leftarrow 1 while S \neq \emptyset do
```

 $v \leftarrow \mathsf{pop}(S); \ \mathrm{ord}[v] \leftarrow i; \ i \leftarrow i+1 \ // \ \mathsf{W\"{a}hle} \ \mathsf{Knoten} \ \mathsf{mit} \ \mathsf{Eingangsgrad} \ \mathsf{0}$ foreach $(v,w) \in E \ \mathsf{do} \ // \ \mathsf{Verringere} \ \mathsf{Eingangsgrad} \ \mathsf{der} \ \mathsf{Nachfolger}$ $| A[w] \leftarrow A[w] - 1$ $| \mathsf{if} \ A[w] = 0 \ \mathsf{then} \ \mathsf{push}(S,w)$

if i = |V| + 1 then return ord else return "Cycle Detected"

Algorithmus Korrektheit

Theorem

Sei G=(V,E) ein gerichteter, kreisfreier Graph. Der Algorithmus TopologicalSort(G) berechnet in Zeit $\Theta(|V|+|E|)$ eine topologische Sortierung ord für G.

Beweis: folgt im wesentlichen aus vorigem Theorem:

- **I** Eingangsgrad verringern entspricht Knotenentfernen.
- Im Algorithmus gilt für jeden Knoten v mit A[v] = 0 dass entweder der Knoten Eingangsgrad 0 hat oder dass zuvor alle Vorgänger einen Wert $\operatorname{ord}[u] \leftarrow i$ zugewiesen bekamen und somit $\operatorname{ord}[v] > \operatorname{ord}[u]$ für alle Vorgänger u von v. Knoten werden nur einmal auf den Stack gelegt.
- Laufzeit: Inspektion des Algorithmus (mit Argumenten wie beim Traversieren).

Algorithmus Korrektheit

Theorem

Sei G=(V,E) ein gerichteter, nicht kreisfreier Graph. Der Algorithmus TopologicalSort(G) terminiert in Zeit $\Theta(|V|+|E|)$ und detektiert Zyklus.

Beweis: Sei $\langle v_{i_1},\ldots,v_{i_k}\rangle$ ein Kreis in G. In jedem Schritt des Algorithmus bleibt $A[v_{i_j}]\geq 1$ für alle $j=1,\ldots,k$. Also werden k Knoten nie auf den Stack gelegt und somit ist zum Schluss $i\leq V+1-k$.

Die Laufzeit des zweiten Teils des Algorithmus kann kürzer werden, jedoch kostet die Berechnung der Eingangsgrade bereits $\Theta(|V|+|E|)$.

29

Alternative: Algorithmus DFS-Topsort(G, v)

```
Input: Graph G=(V,E), Knoten v, Knotenliste L.

if v aktiv then \_ stop (Zyklus)

if v besucht then \_ return

Markiere v aktiv foreach w \in N^+(v) do \_ DFS-Topsort(G,w)

Markiere v besucht Füge v am Anfang der Liste L ein

Rufe Algorithmus für jeden noch nicht besuchten Knoten auf. Asymptotiche Laufzeit \Theta(|V|+|E|.
```

