12. Graphs

Notation, Representation, Graph Traversal (DFS, BFS), Topological
Sorting, Ottman/Widmayer, Kap. 9.1 - 9.4,Cormen et al, Kap. 22

254

[Multi]Graph

edge

() _noce

256

Konigsberg 1736

Cycles

m Is there a cycle through the town (the
graph) that uses each bridge (each edge)
exactly once?

m Euler (1736): no.

m Such a cycle is called Eulerian path.

m Eulerian path < each node provides an
even number of edges (each node is of an
even degree).

‘=" ist straightforward, “<” ist a bit more difficult

255

257

Notation Notation

A directed graph consists of aset V' = {vy,...,v,} of nodes

\ (Vertices) and a set E C V x V of Edges. The same edges may not
be contained more than once.
undirected directed e‘o Q@

vV ={1,2,3,4,5} vV ={1,2,3,4,5}
E ={{1,2},{1,3},{2,3},{2,4}, E ={(1,3),(2,1),(2,5),(3,2), loop
{2,5},{3,4},{3,5},{4,5}} (3,4),(4,2),(4,5),(5,3)}
Notation Notation
An undirected graph consists of a set V' = {vy,...,v,} of nodes a

An undirected graph G = (V, E) without loops where E comprises

C . . : .
andaset £ C {{u,v}|u,v €V} of edges. Edges may bot be all edges between pairwise different nodes is called complete.

contained more than once.’

a complete undirected graph

undirected graph

7 As opposed to the introductory example — it is then called multi-graph.
260 261

Notation Notation

A weighted graph G = (V, E, ¢) is a graph G = (V, E) with an edge
A graph where V' can be partitioned into disjoint sets U and W such weight function ¢ : E — R. c¢(e) is called weight of the edge e.
that each e € E provides a node in U and a node in Wis called
bipartite.

262

Notation Notation

For directed graphs G = (V, F)

m w € Vis called adjacentto v € V, if (v,w) € E For directed graphs G = (V, E)

m Predecessorsof v € V: N~ (v) := {u € V|(u,v) € E}. m In-Degree: deg™ (v) = [N~ (v)],
Successors: N*(v) := {u € V|(v,u) € E} Out-Degree: deg™(v) = |N*(v)|

N o
p—v; = “w
deg™(v) = 3,deg"(v) =2 deg (w) =1,deg" (w) =1

264

Notation

For undirected graphs G = (V, F):
m w € Viscalled adjacenttov € V, if {v,w} € E

m Neighbourhoodof v € V: N(v) = {w € V|{v,w} € E}

m Degree of v: deg(v) = |N(v)| with a special case for the loops:
increase the degree by 2.

N @

deg(v) =5 deg(w) = 2

Paths

m Path: a sequence of nodes (v, ..., v;41) such that for each
i€ {1...k}thereis an edge from v; to v;;1 .

m Length of a path: number of contained edges k.
m Weight of a path (in weighted graphs): Zle c((vi,vi11)) (bzw.
S elfvr v })

m Simple path: path without repeating vertices

266

268

Relationship between node degrees and number of
edges

For each graph G = (V, E) it holds

> ey deg™(v) = 37 oy deg™ (v) = |E|, for G directed
> ,er deg(v) = 2|E|, for G undirected.

267

Connectedness

m An undirected graph is called connected, if for eacheach pair
v,w € V there is a connecting path.

m A directed graph is called strongly connected, if for each pair
v,w € V there is a connecting path.

m A directed graph is called weakly connected, if the corresponding
undirected graph is connected.

269

Simple Observations

m generally: 0 < |E| € O(|V]?)

m connected graph: |E| € Q(|V])

m complete graph: |E| = W (undirected)

m Maximally |E| = |V |? (directed),|E| = W (undirected)

Representation using a Matrix

Graph G = (V, E) with nodes v; . .., v, stored as adjacency matrix
Ag = (aij)1<i j<n With entries from {0, 1}. a;; = 1 if and only if edge
from v; to v;.

O OO OO
OO = O =
_ o O O
SO OoO = O =
—_ O = O O

Memory consumption O(|V|?). Ag is symmetric, if G undirected.

Cycles

m Cycle: path (v, ..
m Simple cycle: Cycle with pairwise different vy, ..
not use an edge more than once.

m Acyclic: graph without any cycles.

. ,Uk+1> with V1 = Vg1
., Uk, that does

Conclusion: undirected graphs cannot contain cycles with length 2
(loops have length 1)

Representation with a List
Many graphs G = (V,FE) with nodes

: 12345
v1,...,v, provide much less than n? []
edges. Representation with adjacency F F?
list: Array A[l],..., A[n|, A; comprises a 3
linked list of nodes in N (v;). I

5

Ar—0O® W0
Q<0 »h<~—0 I

Memory Consumption O(|V| + |E|).

Runtimes of simple Operations Adjacency Matrix Product

(1‘\—/@

Operation Matrix List /3%
Find neighbours/successorsof v € V. ©(n) O(deg” v) @) \5Q
| | |) 01110\ /01011
find v € V without neighbour/successor ©O(n®) ©O(n) 00000 00000
(u,v) € E? O(1) ©O(deg’ v) B=A2=|101011|=]00101

00000 000O00O0
Insert edge O(1) o) 0010 1 011129
Delete edge O(1) O(deg’v)

Interpretation Proof
By Induction.

Base case: straightforward for & = 1. a; ; = ag}}. (0)

Hypothesis: claim is true for all £ <[
LetG = (V, E) be agraph and k € N. Then the element a\" of the Step (I — [+ 1): @*@

matrix (a,t(-fgj))lgl‘ngn = (Ag)" provides the number of paths with ag;l) = Z afl,z - Ak ()
length k from v; to v; . k=1

ar; = 1iff egde k to j, 0 otherwise. Sum counts the number paths
of length [from node v; to all nodes v, that provide a direct direction
to node vj, i.e. all paths with length [+ 1.

Example: Shortest Path

Question: is there a path from 7 to j? How long is the shortest path?

Answer: exponentiate A until for some k < n it holds that ag? > 0.
(k)

k provides the path length of the shortest path. If o, = 0 for all

1 < k < n, then there is no path from i to j.

278

Depth First Search

280

Example: Number triangles

Question: How many triangular path does an undirected graph
contain?

Answer: Remove all cycles (diagonal entries). Compute AY.. a!?

2

determines the number of paths of length 3 that contain <. There are
6 different permutations of a triangular path. Thus for the number of

triangles: S, a!? /6.
00111)\° 44 8 8 8
00111 44 8 8 8 B
11011 =|8283838s3s :>,24/6_4
11100 8 8§ 8 4 4 | Dreiecke.
11100 8 8 8 4 4

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

Adjazenzliste

bllcldl|elf i
Vol Vo
c| fllel b hi

!

f

D U S R

Order a,b,c, f,d,e, g, h,i

281

Algorithm Depth First visit DFS-Visit(G', v)

Input : graph G = (V, E), Knoten v.

Mark v visited
foreach w € N*(v) do
if —(w visited) then
| DFS-Visit(G, w)

Depth First Search starting from node v. Running time (without
recursion): O(deg™ v)

282

lterative DFS-Visit(G, v)
Input : graph G = (V, E)

Stack S « 0; push(S,v)
while S # () do
w < pop(S)
if —(w visited) then
mark w visited
foreach (w,c) € E do // (in reverse order, potentially)
if —(c visited) then
L . push(S,)

Stack size up to | E|, for each node an extra of ©(deg™ (w) + 1)
operations. Overal: ©(|V| + | E|)

Including all calls from the above main program: ©(|V| + | E|) .

Algorithm Depth First visit DFS-Visit(G)

Input : graph G = (V, E)

foreach v € V do
L Mark v not visited

foreach v € V do
if —(v visited) then
. DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
O(IV]+ X er(deg™(v) + 1)) = O(V| + | E]).

283

Breadth First Search

285

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

b

C

d

|

|

|

le—1
le—1

C

S

e

S RS o BRSO L (IS

Order a,b,d,e,c, f, g, h,1

Topological Sorting

I Adjazenzliste

e S e D

286

TOTAL

1

2

3 Arleen
4 Hans
5

Mike
6 |Selina
7
8
9
10
11
12
13
14

Task 1

Task 2

Task 3 Task 4

Total

16

4

4

3

Durchschnitt

18

Evaluation Order?

288

lterative BFS-Visit(G, v)

Input : graph G = (V, E)
Queue Q) < 0

Mark v as active

enqueue(Q, v)

while Q # () do

w < dequeue(Q)

mark w visited

foreach c € N*(w) do

if —(c visited V ¢ active) then
L Mark ¢ as active

enqueue(Q, ¢)

Topological Sorting

m Algorithm requires extra
space of O(|V]).

m Running time including
main program:
o(V]+ |E]).

Topological Sorting of an acyclic directed graph G = (V, E):

Bijective mapping

ord: V — {1,...,|V]|}

such that

ord(v) < ord(w) V (v,w) € E.

Identify ¢ with Element v; := ord' (). Topological sorting =

<Ul, Ce 7U\V|>-

287

289

(Counter-)Examples

e o @erhemd

A possible toplogical sorting of the graph:
Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe

Pullover

s

Cyclic graph: cannot be sorted topologically.

290

Inductive Proof Opposite Direction

m Base case (n = 1): Graph with a single node without loop can be
sorted topologically, setord(v;) = 1.

m Hypothesis: Graph with n nodes can be sorted topologically
m Step (n — n + 1):

G contains a node v, with in-degree deg™ (v,) = 0. Otherwise iteratively
follow edges backwards — after at most n + 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

Graph without node v, and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(v;) < ord(v;) + 1 for
all i # ¢ and set ord(v,) < 1.

292

Observation

A directed graph G = (V, E) permits a topological sorting if and only
if it is acyclic.

Proof “=-": If G contains a cycle it cannot permit a topological
sorting, because in a cycle (v;,,...,v;) it would hold that
Vi, < -0 <0, < V.

291

Preliminary Sketch of an Algorithm

Graph G = (V,E). d + 1
Traverse backwards starting from any node until a node v, with
in-degree 0 is found.

If no node with in-degree 0 found after n stepsm, then the graph
has a cycle.

Set ord(v,) <« d.
Remove v, and his edges from G.
If V #0,thend <« d+ 1, goto step 1.

Worst case runtime: O(|V|?).

293

Improvement

Idea?

Compute the in-degree of all nodes in advance and traverse the
nodes with in-degree 0 while correcting the in-degrees of following
nodes.

294

Algorithm Correctness

Let G = (V, E) be a directed acyclic graph. Algorithm
TopologicalSort(G) computes a topological sorting ord for G with
runtime ©(|V| + | E|).

Proof: follows from previous theorem:

Decreasing the in-degree corresponds with node removal.

In the algorithm it holds for each node v with Av] = 0 that either the node
has in-degree 0 or that previously all predecessors have been assigned a
value ord[u] < i and thus ord[v] > ord[u] for all predecessors u of v. Nodes
are put to the stack only once.

Runtime: inspection of the algorithm (with some arguments like with graph
traversal) 296

Algorithm Topological-Sort(()

Input : graph G = (V, E).
Output : Topological sorting ord

Stack S < 0
foreach v € V do A[v] - 0
foreach (v,w) € F do A[w] + Alw]+ 1 // Compute in-degrees
foreach v € V with A[v] = 0 do push(S,v) // Memorize nodes with in-degree 0
141
while S # () do
v < pop(S); ord[v] - ¢; i <= i+ 1 // Choose node with in-degree 0
foreach (v, w) € E do // Decrease in-degree of successors
Alw] + Afw] — 1
if Alw] =0 then push(S,w)

if i = |V| + 1 then return ord else return “Cycle Detected”

295

Algorithm Correctness

Let G = (V, E) be a directed graph containing a cycle. Algorithm
TopologicalSort(G) terminates within ©(|V'| + |E|) steps and detects
a cycle.

Proof: let (v;,,...,v;,) be acycle in G. In each step of the algorithm remains
Alv;;] > 1forall j = 1,... k. Thus k nodes are never pushed on the stack und
therefore at the end it holds that: <V + 1 — k.

The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already O(|V| + |E|).

297

Alternative: Algorithm DFS-Topsort(G, v)

Input : graph G = (V, E), node v, node list L.
if v active then

. stop (Cycle)
if v visited then

 return

Mark v active

foreach w € N*(v) do
. DFS-Topsort(G, w)

Mark v visited

Add v to head of L

Call this algorithm for each node that has not yet been visited.
Asymptotic Running Time O(|V|+ |E|.

298

