
8. Fundamental Data Structures

Abstract data types stack, queue, implementation variants for linked
lists, [Ottman/Widmayer, Kap. 1.5.1-1.5.2, Cormen et al, Kap.
10.1.-10.2]

172



Abstract Data Types

We recall

A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.
pop(S): Removes and returns top most element of S or null
top(S): Returns top most element of S or null.
isEmpty(S): Returns true if stack is empty, false otherwise.
emptyStack(): Returns an empty stack.

173



Abstract Data Types

We recall

A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.

pop(S): Removes and returns top most element of S or null
top(S): Returns top most element of S or null.
isEmpty(S): Returns true if stack is empty, false otherwise.
emptyStack(): Returns an empty stack.

173



Abstract Data Types

We recall

A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.
pop(S): Removes and returns top most element of S or null

top(S): Returns top most element of S or null.
isEmpty(S): Returns true if stack is empty, false otherwise.
emptyStack(): Returns an empty stack.

173



Abstract Data Types

We recall

A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.
pop(S): Removes and returns top most element of S or null
top(S): Returns top most element of S or null.

isEmpty(S): Returns true if stack is empty, false otherwise.
emptyStack(): Returns an empty stack.

173



Abstract Data Types

We recall

A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.
pop(S): Removes and returns top most element of S or null
top(S): Returns top most element of S or null.
isEmpty(S): Returns true if stack is empty, false otherwise.

emptyStack(): Returns an empty stack.

173



Abstract Data Types

We recall

A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.
pop(S): Removes and returns top most element of S or null
top(S): Returns top most element of S or null.
isEmpty(S): Returns true if stack is empty, false otherwise.
emptyStack(): Returns an empty stack.

173



Implementation Push

top xn xn−1 x1 null

x

push(x, S):

1 Create new list element with x and pointer to the value of top.
2 Assign the node with x to top.

174



Implementation Push

top xn xn−1 x1 null

x

push(x, S):

1 Create new list element with x and pointer to the value of top.

2 Assign the node with x to top.

174



Implementation Push

top xn xn−1 x1 null

x

push(x, S):

1 Create new list element with x and pointer to the value of top.
2 Assign the node with x to top.

174



Implementation Pop

top xn xn−1 x1 null

r

pop(S):

1 If top=null, then return null
2 otherwise memorize pointer p of top in r.
3 Set top to p.next and return r

175



Implementation Pop

top xn xn−1 x1 null

r

pop(S):

1 If top=null, then return null

2 otherwise memorize pointer p of top in r.
3 Set top to p.next and return r

175



Implementation Pop

top xn xn−1 x1 null

r

pop(S):

1 If top=null, then return null
2 otherwise memorize pointer p of top in r.

3 Set top to p.next and return r

175



Implementation Pop

top xn xn−1 x1 null

r

pop(S):

1 If top=null, then return null
2 otherwise memorize pointer p of top in r.
3 Set top to p.next and return r

175



Analysis

Each of the operations push, pop, top and isEmpty on a stack can
be executed in O(1) steps.

176



Queue (fifo)

A queue is an ADT with the following operations

enqueue(x,Q): adds x to the tail (=end) of the queue.
dequeue(Q): removes x from the head of the queue and returns x
(null otherwise)
head(Q): returns the object from the head of the queue (null
otherwise)
isEmpty(Q): return true if the queue is empty, otherwise false
emptyQueue(): returns empty queue.

177



Queue (fifo)

A queue is an ADT with the following operations

enqueue(x,Q): adds x to the tail (=end) of the queue.

dequeue(Q): removes x from the head of the queue and returns x
(null otherwise)
head(Q): returns the object from the head of the queue (null
otherwise)
isEmpty(Q): return true if the queue is empty, otherwise false
emptyQueue(): returns empty queue.

177



Queue (fifo)

A queue is an ADT with the following operations

enqueue(x,Q): adds x to the tail (=end) of the queue.
dequeue(Q): removes x from the head of the queue and returns x
(null otherwise)

head(Q): returns the object from the head of the queue (null
otherwise)
isEmpty(Q): return true if the queue is empty, otherwise false
emptyQueue(): returns empty queue.

177



Queue (fifo)

A queue is an ADT with the following operations

enqueue(x,Q): adds x to the tail (=end) of the queue.
dequeue(Q): removes x from the head of the queue and returns x
(null otherwise)
head(Q): returns the object from the head of the queue (null
otherwise)

isEmpty(Q): return true if the queue is empty, otherwise false
emptyQueue(): returns empty queue.

177



Queue (fifo)

A queue is an ADT with the following operations

enqueue(x,Q): adds x to the tail (=end) of the queue.
dequeue(Q): removes x from the head of the queue and returns x
(null otherwise)
head(Q): returns the object from the head of the queue (null
otherwise)
isEmpty(Q): return true if the queue is empty, otherwise false

emptyQueue(): returns empty queue.

177



Queue (fifo)

A queue is an ADT with the following operations

enqueue(x,Q): adds x to the tail (=end) of the queue.
dequeue(Q): removes x from the head of the queue and returns x
(null otherwise)
head(Q): returns the object from the head of the queue (null
otherwise)
isEmpty(Q): return true if the queue is empty, otherwise false
emptyQueue(): returns empty queue.

177



Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):

1 Create a new list element with x and pointer to null.
2 If tail 6= null, then set tail.next to the node with x.
3 Set tail to the node with x.
4 If head = null, then set head to tail.

178



Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):

1 Create a new list element with x and pointer to null.

2 If tail 6= null, then set tail.next to the node with x.
3 Set tail to the node with x.
4 If head = null, then set head to tail.

178



Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):

1 Create a new list element with x and pointer to null.
2 If tail 6= null, then set tail.next to the node with x.

3 Set tail to the node with x.
4 If head = null, then set head to tail.

178



Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):

1 Create a new list element with x and pointer to null.
2 If tail 6= null, then set tail.next to the node with x.
3 Set tail to the node with x.

4 If head = null, then set head to tail.

178



Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):

1 Create a new list element with x and pointer to null.
2 If tail 6= null, then set tail.next to the node with x.
3 Set tail to the node with x.
4 If head = null, then set head to tail.

178



Invariants
x1 x2 xn−1 xn

head tail

null

With this implementation it holds that

either head = tail = null,
or head = tail 6= null and head.next = null
or head 6= null and tail 6= null and head 6= tail and
head.next 6= null.

179



Invariants
x1 x2 xn−1 xn

head tail

null

With this implementation it holds that

either head = tail = null,

or head = tail 6= null and head.next = null
or head 6= null and tail 6= null and head 6= tail and
head.next 6= null.

179



Invariants
x1 x2 xn−1 xn

head tail

null

With this implementation it holds that

either head = tail = null,
or head = tail 6= null and head.next = null

or head 6= null and tail 6= null and head 6= tail and
head.next 6= null.

179



Invariants
x1 x2 xn−1 xn

head tail

null

With this implementation it holds that

either head = tail = null,
or head = tail 6= null and head.next = null
or head 6= null and tail 6= null and head 6= tail and
head.next 6= null.

179



Implementation Queue
x1 x2 xn−1 xn

head tail

null

r

dequeue(S):

1 Store pointer to head in r. If r = null, then return r .
2 Set the pointer of head to head.next.
3 Is now head = null then set tail to null.
4 Return the value of r.

180



Implementation Queue
x1 x2 xn−1 xn

head tail

null

r

dequeue(S):

1 Store pointer to head in r. If r = null, then return r .

2 Set the pointer of head to head.next.
3 Is now head = null then set tail to null.
4 Return the value of r.

180



Implementation Queue
x1 x2 xn−1 xn

head tail

null

r

dequeue(S):

1 Store pointer to head in r. If r = null, then return r .
2 Set the pointer of head to head.next.

3 Is now head = null then set tail to null.
4 Return the value of r.

180



Implementation Queue
x1 x2 xn−1 xn

head tail

null

r

dequeue(S):

1 Store pointer to head in r. If r = null, then return r .
2 Set the pointer of head to head.next.
3 Is now head = null then set tail to null.

4 Return the value of r.

180



Implementation Queue
x1 x2 xn−1 xn

head tail

null

r

dequeue(S):

1 Store pointer to head in r. If r = null, then return r .
2 Set the pointer of head to head.next.
3 Is now head = null then set tail to null.
4 Return the value of r.

180



Analysis

Each of the operations enqueue, dequeue, head and isEmpty on
the queue can be executed in O(1) steps.

181



Implementation Variants of Linked Lists
List with dummy elements (sentinels).

x1 x2 xn−1 xn

head tail

Advantage: less special cases

Variant: like this with pointer of an element stored singly indirect.
(Example: pointer to x3 points to x2.)

182



Implementation Variants of Linked Lists
List with dummy elements (sentinels).

x1 x2 xn−1 xn

head tail

Advantage: less special cases

Variant: like this with pointer of an element stored singly indirect.
(Example: pointer to x3 points to x2.)

182



Implementation Variants of Linked Lists

Doubly linked list

null x1 x2 xn−1 xn null

head tail

183



Overview

enqueue delete search concat
(A) Θ(1) Θ(n) Θ(n) Θ(n)
(B) Θ(1) Θ(n) Θ(n) Θ(1)
(C) Θ(1) Θ(1) Θ(n) Θ(1)
(D) Θ(1) Θ(1) Θ(n) Θ(1)

(A) = singly linked
(B) = Singly linked with dummy element at the beginning and the end
(C) = Singly linked with indirect element addressing
(D) = doubly linked

184


	Fundamental Data Structures
	Stack
	Queue
	Implementation Variants of Linked Lists


