
6. Java Errors and Exceptions

Errors, runtime-exceptions, checked-exceptions, exception handling,
special case: resources

129

Errors and Exceptions in Java

Exceptions are bad, or not?

Errors and exceptions interrupt the
normal execution of the program abruptly
and represent an unplanned event.

Java allows to catch such events and deal with it (as opposed to crashing the
entire program)

Unhandled errors and exceptions are passed up through the call stack.

130

Errors

This glass is broken for good

Errors happen in the virtual machine of
Java and are not repairable.

Examples

No more memory available

Too high call stack (→ recursion)

Missing libraries

Bug in the virtual machine

Hardware error

131

Exceptions

Exceptions are triggered by the virtual machine or the program itself
and can typically be handled in order to re-establish the normal
situation

Clean-up and pour in a new glass

Examples

De-reference null

Division by zero

Read/write errors (on files)

Errors in business logic

132

Exception Types

Runtime Exceptions

Can happen anywhere

Can be handled

Cause: bug in the code

Checked Exceptions

Must be declared

Must be handled

Cause: Unlikely but not impossible
event

133

Example of a Runtime Exception

1 import java. util .Scanner;
2 class ReadTest {
3 public static void main(String[] args){
4 int i = readInt("Number");
5 }
6 private static int readInt(String prompt){
7 System.out.print(prompt + ": ");
8 Scanner input = new Scanner(System.in);
9 return input.nextInt ();
10 }
11 }

Input: Number: asdf

134

Unhandled Errors and Exceptions

The program crashes and leaves behind a stack trace. In there, we
can see the where the program got interrupted.

Exception in thread "main" java. util .InputMismatchException
[...]

at java . util .Scanner.nextInt(Scanner.java:2076)
at ReadTest.readInt(ReadTest.java:9)
at ReadTest.main(ReadTest.java:4)

⇒ Forensic investigation based on this information.

135

Exception gets Propagated through Call Stack

Java VM Runtime

ReadTest.main

ReadTest.main();

ReadTest.readInt

int i = readInt("Number");

Scanner.nextInt

return input.nextInt();

88

88

88

=

136

Unstanding Stack Traces

Output:
Exception in thread "main" java.util.InputMismatchException

at java . util .Scanner.throwFor(Scanner.java:864)
at java . util .Scanner.next(Scanner.java:1485)
at java . util .Scanner.nextInt(Scanner.java:2117)
at java . util .Scanner.nextInt(Scanner.java:2076)
at ReadTest.readInt(ReadTest.java:9)
at ReadTest.main(ReadTest.java:4)

An unsuited input ...

... in method readInt on line 9 ...

... called by method main on line 4.
137

Unstanding Stack Traces

1 import java. util .Scanner;
2 class ReadTest {
3 public static void main(String[] args){
4 int i = readInt("Number");
5 }
6 private static int readInt(String prompt){
7 System.out.print(prompt + ": ");
8 Scanner input = new Scanner(System.in);
9 return input.nextInt ();
10 }
11 }

at ReadTest.readInt(ReadTest.java:9)
at ReadTest.main(ReadTest.java:4)
at ReadTest.readInt(ReadTest.java:9)
at ReadTest.main(ReadTest.java:4)

138

Runtime Exception: Bug in the Code?!

Where is the bug?
private static int readInt(String prompt){

System.out.print(prompt + ": ");
Scanner input = new Scanner(System.in);
return input.nextInt();

}

Not guaranteed that the next input is an int

⇒ The scanner class provides a test for this

139

Runtime Exception: Bug Fix!

Check first!
private static int readInt(String prompt){

System.out.print(prompt + ": ");
Scanner input = new Scanner(System.in);
if (input.hasNextInt()){

return input.nextInt ();
} else {

return 0; // or do something else ...?!
}

}

140

First Finding: often no Exceptional Situation

Often, those “exceptional” cases aren’t that unusual, but pretty
foreseeable. In those cases no exceptions should be used!

Kids are tipping over cups. You get used to it.

Examples

Wrong credentials when logging in

Empty required fields in forms

Unavailable internet resources

Timeouts

141

Second Finding: Avoid Exceptions

Problem solved.

Instead of letting a runtime exception happen, ac-
tively prevent such a situation to arise.

Examples

Check user inputs early

Use optional types

Predict timeout situations

Plan B for unavailable resources

142

Exception Types

Runtime Exceptions

Can happen anywhere

Can be handled

Cause: bug in the code

Checked Exceptions

Must be declared

Must be handled

Cause: Unlikely but not impossible
event

143

Example of a Checked Exception
private static String[] readFile(String filename){

FileReader fr = new FileReader(filename);
BufferedReader bufr = new BufferedReader(fr);
...
line = bufr.readLine();
...

}

Compiler Error:
./Root/Main.java:9: error: unreported exception FileNotFoundException; must be caught or declared to be thrown

FileReader fr = new FileReader(filename);
^

./Root/Main.java:11: error: unreported exception IOException; must be caught or declared to be thrown
String line = bufr.readLine();

^
2 errors

144

Quick Look into Javadoc

145

Why use Checked Exceptions?

The following situations justify checked exception:

Fault is unprobable but not impossibe – and can be fixed by taking
suitable measures at runtime.

The caller of a method with a declared checked exception is forced
to deal with it – catch it or pass it up.

146

Handling Exceptions
private static String[] readFile(String filename){

try{
FileReader fr = new FileReader(filename);
BufferedReader bufr = new BufferedReader(fr);
...
line = bufr.readLine();
...

} catch (IOException e){
// do some recovery handling

} finally {
// close resources

}
}

Protected
scope

Measures to re-establis the
normal situation

Gets executed in any case, at
the end, always!

147

Handling Exceptions: Stop Propagation!

Java VM Runtime

ReadTest.main

ReadTest.main();

ReadTest.readFile

lines = readFile("dataset.csv");

BufferedReader.readLine

line = bufr.readLine();

88

4
Exception caught!

148

Finally: Closing Resources

In Java, resources must be closed after use at all costs. Otherwise,
memory won’t get freed.

Resources:

Files
Data streams
UI elements
. . .

149

Try-With-Resources Statement

Specific syntax to close resources automatically:
private static String[] readFile(String filename){

try (FileReader fr = new FileReader(filename);
BufferedReader bufr = new BufferedReader(fr)) {

...
line = bufr.readLine();
...

} catch (IOException e){
// do some recovery handling

}
}

Resources get
opened here

Resources get closed automatically here

150

7. Functional Concepts in Java

Functional programming, lambda expressions, streams, pipelines

151

Functional vs. Imperative Programming

Imperative concepts

Executing statements
State (e.g. Fields)
Mutable data types
Focus on data structures
Focus on “how”

Functional Concepts

Evaluating expressions
Stateless
Immutable data types
Focus on streams
Focus on “what”

152

Example: Reading of Files - Imperative

try (BufferedReader br=new BufferedReader(new FileReader("data.csv"))){
LinkedList<Measurement> result = new LinkedList<>();
br.readLine();
String line ;
while ((line = br.readLine()) != null){

Measurement m = new Measurement(line);
result .add(m);

}
return result ;

}

153

Example: Readong of Files - Functional

try (Stream<String> stream = Files.lines(Paths.get("data.csv"))) {

return stream.skip(1).map(Measurement::new).collect(toList());

}

154

Streams

In Java, Streams are the basis for functional programming. Sources
of streams:

Files
Arrays
Data structures
. . .

Example

Stream<String> stream = Files.lines (...))

155

Operations on Streams: Map

Map: Applying functions on individual elements of the stream

Mathematical computations
Creation of new objects based on existing elements.
. . .

Example

map(Measurement::new)

156

Operations on Streams: Reduce

Reduce: Aggregation of individual elements of a stream to one
single value.

Statistical aggregation
Put elements in a data structure
. . .

Example

collect (toList ())

157

Example: Search for Data - Imparative

List<Measurement> data = readCsvData();
Coordinate ref = readCoordinate();

for (Measurement m : data){
if (m.position.near(ref)){

System.out.println(m.originalLine);
}

}

158

Example: Search for Data - Functional

List<Measurement> data = readCsvData();
Coordinate ref = readCoordinate();

data.stream()
. filter (m −> ref.near(m.position))
. forEach(System.out::println);

159

Operations on Streams: Filter

Filter: Filter individual elements of a stream.

Remove illegal values
Select values based on inquiries
. . .

Example

filter (m −> ref.near(m.position))

160

Operations on Streams: Side Effects

Sideeffects: The non-functional aspect: Execution on arbitrary
operations based on individual elements.

Input/Output
Update data structures
. . .

Example

forEach(System.out::println)

161

Functionality as Parameter

Operations on streams have functionality (code) as parameter,
instead of data

Possibility to pass functionality (instead of data)

code snippets
References on methods
References to constructors

How can we do this?

162

Lambda Expressions

Lambda expressions are basically methods without names.

Normal method
double discriminant(double a, double b, double c){

return b∗b − 4∗a∗c;
}

Equivalent lambda expression
(double a, double b, double c) −> {

return b∗b − 4∗a∗c;
}

163

Lambda Expressions

Lambda expression
(double a, double b, double c) −> {

return b∗b − 4∗a∗c;
}

Without explicit type declaration of the parameters
(a, b, c) −> {

return b∗b − 4∗a∗c;
}

With a single expression instead of a block
(a, b, c) −> b∗b − 4∗a∗c

164

Lambda Expression in the Example
Example

filter (m −> ref.near(m.position))

The method filter expects a method as parameter that takes a Measurement
as parameter and returns a boolean.

m is a parameter of type Measurement X

ref.near(m.position) is a single boolean expression X

The variable ref from the defining context is accessible, if it is effectively
constant (final).

165

References on Methods

To call a method on an object, we write:

object.method()

To specify a reference to a method on an object, we write:

object::methode

166

References on Static Methods

To call a static method, we write:

Clazz.method()

To specify a reference to a static method, we write:

Clazz::method

167

Reference to a Method in the Example

Example

forEach(System.out::println)

The method forEach expects a method, which doesn’t return anything and
takes an argument of type Measurement.

The method println on object out satisfies those properties X

168

References to Constructors

To call a constructor of a class, we write:

new Clazz()

To specify a reference to a constructor of a class, we write:

Clazz::new

169

References to a Constructor in the Example

Example

map(Measurement::new)

The method map expects a method that returns an object of a certain data types
(it doesn’t matter which) and an argument of type String.

The constructor of the class Measurement satisfies this property X

170

Advantages and Disadvantages of Functional Programming

Less error-prone

Easier to maintain

Allows for elegant programming
constructs

Independent on specific
architecture

Learn another language concept

Details on the execution are
unknown

Super-imposed on an imperative
language

171

