
Computer Science II

Course at D-BAUG, ETH Zurich

Felix Friedrich & Hermann Lehner

FS 2018

1

1. Introduction

Algorithms and Data Structures, a First Example

23

Goals of the course

Understand the design and analysis of fundamental algorithms
and data structures.
Basics about design and implementation of databases.

24

Contents

data structures / algorithms
The notion invariant, cost model, Landau notation

algorithms design, induction
searching, selection and sorting

dictionaries: hashing and search trees
dynamic programming

graphs, shortest paths, backtracking, maximum flow

Software Engineering
Files and Exceptions

Java Streams API

Databases
ER model, relational model, SQL

25

1.1 Algorithms

[Cormen et al, Kap. 1;Ottman/Widmayer, Kap. 1.1]

26

Algorithm

Algorithm: well defined computing procedure to compute output data
from input data

27

example problem

Input : A sequence of n numbers (a1, a2, . . . , an)

Output : Permutation (a′1, a
′
2, . . . , a

′
n) of the sequence (ai)1≤i≤n, such that

a′1 ≤ a′2 ≤ · · · ≤ a′n

Possible input
(1, 7, 3), (15, 13, 12,−0.5), (1) . . .

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the
problem instance. Often there are “good” and “bad” instances.

28

example problem

Input : A sequence of n numbers (a1, a2, . . . , an)
Output : Permutation (a′1, a

′
2, . . . , a

′
n) of the sequence (ai)1≤i≤n, such that

a′1 ≤ a′2 ≤ · · · ≤ a′n

Possible input
(1, 7, 3), (15, 13, 12,−0.5), (1) . . .

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the
problem instance. Often there are “good” and “bad” instances.

28

example problem

Input : A sequence of n numbers (a1, a2, . . . , an)
Output : Permutation (a′1, a

′
2, . . . , a

′
n) of the sequence (ai)1≤i≤n, such that

a′1 ≤ a′2 ≤ · · · ≤ a′n

Possible input
(1, 7, 3), (15, 13, 12,−0.5), (1) . . .

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the
problem instance. Often there are “good” and “bad” instances.

28

example problem

Input : A sequence of n numbers (a1, a2, . . . , an)
Output : Permutation (a′1, a

′
2, . . . , a

′
n) of the sequence (ai)1≤i≤n, such that

a′1 ≤ a′2 ≤ · · · ≤ a′n

Possible input
(1, 7, 3), (15, 13, 12,−0.5), (1) . . .

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the
problem instance. Often there are “good” and “bad” instances.

28

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching

routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
fabrication pipeline: Topological Sorting
autocompletion and spell-checking: Dictionaries / Trees
Symboltables (compiler) : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing
Drawing at the computer: Digitizing lines and circles, filling
polygons
Page-Rank: (Markov-Chain) Monte Carlo ...

29

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure

DNA matching: Dynamic Programming
fabrication pipeline: Topological Sorting
autocompletion and spell-checking: Dictionaries / Trees
Symboltables (compiler) : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing
Drawing at the computer: Digitizing lines and circles, filling
polygons
Page-Rank: (Markov-Chain) Monte Carlo ...

29

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming

fabrication pipeline: Topological Sorting
autocompletion and spell-checking: Dictionaries / Trees
Symboltables (compiler) : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing
Drawing at the computer: Digitizing lines and circles, filling
polygons
Page-Rank: (Markov-Chain) Monte Carlo ...

29

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
fabrication pipeline: Topological Sorting

autocompletion and spell-checking: Dictionaries / Trees
Symboltables (compiler) : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing
Drawing at the computer: Digitizing lines and circles, filling
polygons
Page-Rank: (Markov-Chain) Monte Carlo ...

29

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
fabrication pipeline: Topological Sorting
autocompletion and spell-checking: Dictionaries / Trees

Symboltables (compiler) : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing
Drawing at the computer: Digitizing lines and circles, filling
polygons
Page-Rank: (Markov-Chain) Monte Carlo ...

29

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
fabrication pipeline: Topological Sorting
autocompletion and spell-checking: Dictionaries / Trees
Symboltables (compiler) : Hash-Tables

The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing
Drawing at the computer: Digitizing lines and circles, filling
polygons
Page-Rank: (Markov-Chain) Monte Carlo ...

29

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
fabrication pipeline: Topological Sorting
autocompletion and spell-checking: Dictionaries / Trees
Symboltables (compiler) : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing

Drawing at the computer: Digitizing lines and circles, filling
polygons
Page-Rank: (Markov-Chain) Monte Carlo ...

29

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
fabrication pipeline: Topological Sorting
autocompletion and spell-checking: Dictionaries / Trees
Symboltables (compiler) : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing
Drawing at the computer: Digitizing lines and circles, filling
polygons

Page-Rank: (Markov-Chain) Monte Carlo ...

29

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
fabrication pipeline: Topological Sorting
autocompletion and spell-checking: Dictionaries / Trees
Symboltables (compiler) : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing
Drawing at the computer: Digitizing lines and circles, filling
polygons
Page-Rank: (Markov-Chain) Monte Carlo ...

29

Characteristics

Extremely large number of potential solutions
Practical applicability

30

Data Structures

Organisation of the data tailored towards the algorithms that
operate on the data.
Programs = algorithms + data structures.

31

A dream

If computers were infinitely fast and had an infinite amount of
memory ...
... then we would still need the theory of algorithms (only) for
statements about correctness (and termination).

32

The reality

Resources are bounded and not free:

Computing time→ Efficiency
Storage space→ Efficiency

33

1.2 Ancient Egyptian Multiplication

Ancient Egyptian Multiplication

34

Ancient Egyptian Multiplication2

Compute 11 · 9

11 9

22 4
44 2
88 1
99 −

9 11

18 5
36 2
72 1
99

1 Double left, integer division
by 2 on the right

2 Even number on the right⇒
eliminate row.

3 Add remaining rows on the
left.

2Also known as russian multiplication
35

Ancient Egyptian Multiplication2

Compute 11 · 9

11 9

22 4
44 2
88 1
99 −

9 11

18 5
36 2
72 1
99

1 Double left, integer division
by 2 on the right

2 Even number on the right⇒
eliminate row.

3 Add remaining rows on the
left.

2Also known as russian multiplication
35

Ancient Egyptian Multiplication2

Compute 11 · 9

11 9
22 4

44 2
88 1
99 −

9 11
18 5

36 2
72 1
99

1 Double left, integer division
by 2 on the right

2 Even number on the right⇒
eliminate row.

3 Add remaining rows on the
left.

2Also known as russian multiplication
35

Ancient Egyptian Multiplication2

Compute 11 · 9

11 9
22 4
44 2

88 1
99 −

9 11
18 5
36 2

72 1
99

1 Double left, integer division
by 2 on the right

2 Even number on the right⇒
eliminate row.

3 Add remaining rows on the
left.

2Also known as russian multiplication
35

Ancient Egyptian Multiplication2

Compute 11 · 9

11 9
22 4
44 2
88 1

99 −

9 11
18 5
36 2
72 1

99

1 Double left, integer division
by 2 on the right

2 Even number on the right⇒
eliminate row.

3 Add remaining rows on the
left.

2Also known as russian multiplication
35

Ancient Egyptian Multiplication2

Compute 11 · 9

11 9
22 4
44 2
88 1

99 −

9 11
18 5
36 2
72 1

99

1 Double left, integer division
by 2 on the right

2 Even number on the right⇒
eliminate row.

3 Add remaining rows on the
left.

2Also known as russian multiplication
35

Ancient Egyptian Multiplication2

Compute 11 · 9

11 9
22 4
44 2
88 1

99 −

9 11
18 5
36 2
72 1

99

1 Double left, integer division
by 2 on the right

2 Even number on the right⇒
eliminate row.

3 Add remaining rows on the
left.

2Also known as russian multiplication
35

Ancient Egyptian Multiplication2

Compute 11 · 9

11 9
22 4
44 2
88 1
99 −

9 11
18 5
36 2
72 1
99

1 Double left, integer division
by 2 on the right

2 Even number on the right⇒
eliminate row.

3 Add remaining rows on the
left.

2Also known as russian multiplication
35

Advantages

Short description, easy to grasp
Efficient to implement on a computer: double = left shift, divide by
2 = right shift

Beispiel

left shift 9 = 010012 → 100102 = 18
right shift 9 = 010012 → 001002 = 4

36

Questions

Does this always work (negative numbers?)?
If not, when does it work?
How do you prove correctness?
Is it better than the school method?
What does “good” mean at all?
How to write this down precisely?

37

Observation

If b > 1, a ∈ Z, then:

a · b =

{
2a · b2 falls b gerade,
a + 2a · b−12 falls b ungerade.

38

Termination

a · b =

a falls b = 1,
2a · b2 falls b gerade,
a + 2a · b−12 falls b ungerade.

39

Recursively, Functional

f(a, b) =

a falls b = 1,
f(2a, b2) falls b gerade,
a + f(2a, b−12) falls b ungerade.

40

Implemented

// pre: b>0
// post: return a∗b
int f(int a, int b){

if(b==1)
return a;

else if (b%2 == 0)
return f(2∗a, b/2);

else
return a + f(2∗a, (b−1)/2);

}

41

Correctnes

f(a, b) =

a if b = 1,
f(2a, b2) if b even,
a + f(2a · b−12) if b odd.

Remaining to show: f(a, b) = a · b for a ∈ Z, b ∈ N+.

42

Proof by induction

Base clause: b = 1⇒ f(a, b) = a = a · 1.
Hypothesis: f(a, b′) = a · b′ für 0 < b′ ≤ b

Step: f(a, b + 1)
!

= a · (b + 1)

f(a, b + 1) =

f(2a,

≤b︷ ︸︸ ︷
b + 1

2
) = a · (b + 1) if b odd,

a + f(2a,
b

2︸︷︷︸
≤b

) = a + a · b if b even.

�
43

Recursion vs. Iteration

// pre: b>0
// post: return a∗b
int f(int a, int b){

if (b==1)
return a;

else if (b%2 == 0)
return f(2∗a, b/2);

else
return a + f(2∗a, (b−1)/2);

}

// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res ;

}

44

Invariants!
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res;

}

Sei x := a · b.

here: x = a · b + res

if here x = a · b + res ...

... then also here x = a · b + res

b even

here: x = a · b + res

here: x = a · b + res und b = 0

Also res = x.

45

Invariants!
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res;

}

Sei x := a · b.

here: x = a · b + res

if here x = a · b + res ...

... then also here x = a · b + res

b even

here: x = a · b + res

here: x = a · b + res und b = 0

Also res = x.

45

Invariants!
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res;

}

Sei x := a · b.

here: x = a · b + res

if here x = a · b + res ...

... then also here x = a · b + res

b even

here: x = a · b + res

here: x = a · b + res und b = 0

Also res = x.

45

Invariants!
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res;

}

Sei x := a · b.

here: x = a · b + res

if here x = a · b + res ...

... then also here x = a · b + res

b even

here: x = a · b + res

here: x = a · b + res und b = 0

Also res = x.

45

Invariants!
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res;

}

Sei x := a · b.

here: x = a · b + res

if here x = a · b + res ...

... then also here x = a · b + res

b even

here: x = a · b + res

here: x = a · b + res und b = 0

Also res = x.

45

Invariants!
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res;

}

Sei x := a · b.

here: x = a · b + res

if here x = a · b + res ...

... then also here x = a · b + res

b even

here: x = a · b + res

here: x = a · b + res und b = 0

Also res = x.

45

Invariants!
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res;

}

Sei x := a · b.

here: x = a · b + res

if here x = a · b + res ...

... then also here x = a · b + res

b even

here: x = a · b + res

here: x = a · b + res und b = 0

Also res = x.

45

Invariants!
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res;

}

Sei x := a · b.

here: x = a · b + res

if here x = a · b + res ...

... then also here x = a · b + res

b even

here: x = a · b + res

here: x = a · b + res und b = 0

Also res = x.

45

Conclusion

The expression a · b + res is an invariant

Values of a, b, res change but the invariant remains basically
unchanged
The invariant is only temporarily discarded by some statement
but then re-established
If such short statement sequences are considered atomiv, the
value remains indeed invariant
In particular the loop contains an invariant, called loop invariant
and operates there like the induction step in induction proofs.
Invariants are obviously powerful tools for proofs!

46

Analysis
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res ;

}

Ancient Egyptian Multiplication corre-
sponds to the school method with
radix 2.

1 0 0 1 × 1 0 1 1

1 0 0 1 (9)
1 0 0 1 (18)
1 1 0 1 1

1 0 0 1 (72)
1 1 0 0 0 1 1 (99)

47

Analysis
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res ;

}

Ancient Egyptian Multiplication corre-
sponds to the school method with
radix 2.

1 0 0 1 × 1 0 1 1
1 0 0 1 (9)

1 0 0 1 (18)
1 1 0 1 1

1 0 0 1 (72)
1 1 0 0 0 1 1 (99)

47

Analysis
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res ;

}

Ancient Egyptian Multiplication corre-
sponds to the school method with
radix 2.

1 0 0 1 × 1 0 1 1
1 0 0 1 (9)

1 0 0 1 (18)

1 1 0 1 1
1 0 0 1 (72)
1 1 0 0 0 1 1 (99)

47

Analysis
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res ;

}

Ancient Egyptian Multiplication corre-
sponds to the school method with
radix 2.

1 0 0 1 × 1 0 1 1
1 0 0 1 (9)

1 0 0 1 (18)
1 1 0 1 1

1 0 0 1 (72)
1 1 0 0 0 1 1 (99)

47

Analysis
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res ;

}

Ancient Egyptian Multiplication corre-
sponds to the school method with
radix 2.

1 0 0 1 × 1 0 1 1
1 0 0 1 (9)

1 0 0 1 (18)
1 1 0 1 1

1 0 0 1 (72)

1 1 0 0 0 1 1 (99)

47

Analysis
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res ;

}

Ancient Egyptian Multiplication corre-
sponds to the school method with
radix 2.

1 0 0 1 × 1 0 1 1
1 0 0 1 (9)

1 0 0 1 (18)
1 1 0 1 1

1 0 0 1 (72)
1 1 0 0 0 1 1 (99)

47

Efficiency
Question: how long does a multiplication of a and b take?

Measure for efficiency
Total number of fundamental operations: double, divide by 2, shift, test for
“even”, addition
In the recursive and recursive code: maximally 6 operations per call or
iteration, respectively

Essential criterion:
Number of recursion calls or
Number iterations (in the iterative case)

b
2n ≤ 1 holds for n ≥ log2 b. Consequently not more than 6dlog2 be
fundamental operations.

48

2. Efficiency of algorithms

Efficiency of Algorithms, Random Access Machine Model, Function
Growth, Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 |
Ottman/Widmayer, Kap. 1.1]

49

Efficiency of Algorithms

Goals

Quantify the runtime behavior of an algorithm independent of the
machine.
Compare efficiency of algorithms.
Understand dependece on the input size.

50

Technology Model

Random Access Machine (RAM)

Execution model: instructions are executed one after the other (on
one processor core).

Memory model: constant access time.
Fundamental operations: computations (+,−,·,...) comparisons,
assignment / copy, flow control (jumps)
Unit cost model: fundamental operations provide a cost of 1.
Data types: fundamental types like size-limited integer or floating
point number.

51

Technology Model

Random Access Machine (RAM)

Execution model: instructions are executed one after the other (on
one processor core).
Memory model: constant access time.

Fundamental operations: computations (+,−,·,...) comparisons,
assignment / copy, flow control (jumps)
Unit cost model: fundamental operations provide a cost of 1.
Data types: fundamental types like size-limited integer or floating
point number.

51

Technology Model

Random Access Machine (RAM)

Execution model: instructions are executed one after the other (on
one processor core).
Memory model: constant access time.
Fundamental operations: computations (+,−,·,...) comparisons,
assignment / copy, flow control (jumps)

Unit cost model: fundamental operations provide a cost of 1.
Data types: fundamental types like size-limited integer or floating
point number.

51

Technology Model

Random Access Machine (RAM)

Execution model: instructions are executed one after the other (on
one processor core).
Memory model: constant access time.
Fundamental operations: computations (+,−,·,...) comparisons,
assignment / copy, flow control (jumps)
Unit cost model: fundamental operations provide a cost of 1.

Data types: fundamental types like size-limited integer or floating
point number.

51

Technology Model

Random Access Machine (RAM)

Execution model: instructions are executed one after the other (on
one processor core).
Memory model: constant access time.
Fundamental operations: computations (+,−,·,...) comparisons,
assignment / copy, flow control (jumps)
Unit cost model: fundamental operations provide a cost of 1.
Data types: fundamental types like size-limited integer or floating
point number.

51

Asymptotic behavior

An exact running time can normally not be predicted even for small
input data.

We consider the asymptotic behavior of the algorithm.
And ignore all constant factors.

Example
An operation with cost 20 is no worse than one with cost 1
Linear growth with gradient 5 is as good as linear growth with
gradient 1.

52

2.2 Function growth

O, Θ, Ω [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]

53

Superficially

Use the asymptotic notation to specify the execution time of
algorithms.

We write Θ(n2) and mean that the algorithm behaves for large n like
n2: when the problem size is doubled, the execution time multiplies
by four.

54

More precise: asymptotic upper bound

provided: a function g : N→ R.

Definition:

O(g) = {f : N→ R|
∃c > 0, n0 ∈ N : 0 ≤ f(n) ≤ c · g(n) ∀n ≥ n0}

Notation:
O(g(n)) := O(g(·)) = O(g).

55

Graphic

g(n) = n2

f ∈ O(g)

n0 n
56

Graphic

g(n) = n2

f ∈ O(g)

h ∈ O(g)

n0

n
56

Examples

O(g) = {f : N→ R| ∃c > 0, n0 ∈ N : 0 ≤ f(n) ≤ c · g(n) ∀n ≥ n0}

f(n) f ∈ O(?) Example
3n + 4

O(n) c = 4, n0 = 4

2n

O(n) c = 2, n0 = 0

n2 + 100n

O(n2) c = 2, n0 = 100

n +
√
n

O(n) c = 2, n0 = 1

57

Examples

O(g) = {f : N→ R| ∃c > 0, n0 ∈ N : 0 ≤ f(n) ≤ c · g(n) ∀n ≥ n0}

f(n) f ∈ O(?) Example
3n + 4 O(n) c = 4, n0 = 4
2n

O(n) c = 2, n0 = 0

n2 + 100n

O(n2) c = 2, n0 = 100

n +
√
n

O(n) c = 2, n0 = 1

57

Examples

O(g) = {f : N→ R| ∃c > 0, n0 ∈ N : 0 ≤ f(n) ≤ c · g(n) ∀n ≥ n0}

f(n) f ∈ O(?) Example
3n + 4 O(n) c = 4, n0 = 4
2n O(n) c = 2, n0 = 0
n2 + 100n

O(n2) c = 2, n0 = 100

n +
√
n

O(n) c = 2, n0 = 1

57

Examples

O(g) = {f : N→ R| ∃c > 0, n0 ∈ N : 0 ≤ f(n) ≤ c · g(n) ∀n ≥ n0}

f(n) f ∈ O(?) Example
3n + 4 O(n) c = 4, n0 = 4
2n O(n) c = 2, n0 = 0
n2 + 100n O(n2) c = 2, n0 = 100
n +
√
n

O(n) c = 2, n0 = 1

57

Examples

O(g) = {f : N→ R| ∃c > 0, n0 ∈ N : 0 ≤ f(n) ≤ c · g(n) ∀n ≥ n0}

f(n) f ∈ O(?) Example
3n + 4 O(n) c = 4, n0 = 4
2n O(n) c = 2, n0 = 0
n2 + 100n O(n2) c = 2, n0 = 100
n +
√
n O(n) c = 2, n0 = 1

57

Property

f1 ∈ O(g), f2 ∈ O(g)⇒ f1 + f2 ∈ O(g)

58

Converse: asymptotic lower bound

Given: a function g : N→ R.

Definition:

Ω(g) = {f : N→ R|
∃c > 0, n0 ∈ N : 0 ≤ c · g(n) ≤ f(n) ∀n ≥ n0}

59

Example

g(n) = n

f ∈ Ω(g)

n0 n

60

Example

g(n) = n

f ∈ Ω(g)h ∈ Ω(g)

n0 n

60

Asymptotic tight bound

Given: function g : N→ R.

Definition:

Θ(g) := Ω(g) ∩ O(g).

Simple, closed form: exercise.

61

Example

g(n) = n2

f ∈ Θ(n2)

h(n) = 0.5 · n2

n
62

Notions of Growth

O(1) bounded array access
O(log log n) double logarithmic interpolated binary sorted sort
O(log n) logarithmic binary sorted search
O(
√
n) like the square root naive prime number test

O(n) linear unsorted naive search
O(n log n) superlinear / loglinear good sorting algorithms
O(n2) quadratic simple sort algorithms
O(nc) polynomial matrix multiply
O(2n) exponential Travelling Salesman Dynamic Programming
O(n!) factorial Travelling Salesman naively

63

Small n

2 3 4 5 6

20

40

60

lnn
n

n2

n4 2n

64

Larger n

5 10 15 20

0.2

0.4

0.6

0.8

1
·106

log n
n
n2

n4

2n

65

“Large” n

20 40 60 80 100

0.2

0.4

0.6

0.8

1
·1020

log n
n
n2n4

2n

66

Logarithms

10 20 30 40 50

200

400

600

800

1,000

n

n2

n3/2

log n

n log n

67

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2)

correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).

3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:

n ∈ O(n) and even n ∈ Θ(n).

3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).

3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).

3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2)

correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2) correct but uncommon:

Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n)

is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong:

2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2)

is correct

Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct

Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct

Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2)

is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong

n 6∈ Ω(n2) ⊃ Θ(n2)

68

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

68

Useful Tool

Theorem
Let f, g : N→ R

+ be two functions, then it holds that

1 limn→∞
f(n)
g(n) = 0⇒ f ∈ O(g), O(f) (O(g).

2 limn→∞
f(n)
g(n) = C > 0 (C constant)⇒ f ∈ Θ(g).

3
f(n)
g(n) →n→∞∞⇒ g ∈ O(f), O(g) (O(f).

69

About the Notation

Common notation
f = O(g)

should be read as f ∈ O(g).

Clearly it holds that

f1 = O(g), f2 = O(g)6⇒f1 = f2!

Beispiel
n = O(n2), n2 = O(n2) but naturally n 6= n2.

70

Algorithms, Programs and Execution Time

Program: concrete implementation of an algorithm.

Execution time of the program: measurable value on a concrete
machine. Can be bounded from above and below.
Beispiel
3GHz computer. Maximal number of operations per cycle (e.g. 8). ⇒ lower bound.
A single operations does never take longer than a day⇒ upper bound.

From an asymptotic point of view the bounds coincide.

71

	Introduction
	Algorithms
	Ancient Egyptian Multiplication

	Efficiency of algorithms
	Efficiency of Algorithms
	Function growth

