Computer Science |l
Course at D-BAUG, ETH Zurich

Felix Friedrich & Hermann Lehner

FS 2018

Goals of the course

m Understand the design and analysis of fundamental algorithms
and data structures.

m Basics about design and implementation of databases.

24

1. Introduction

Algorithms and Data Structures, a First Example

Contents

A 4

data structures / algorithms

The notion invariant, cost model, Landau notation
algorithms design, induction
searching, selection and sorting
dictionaries: hashing and search trees
dynamic programming
graphs, shortest paths, backtracking, maximum flow

l,
y

Software Engineering ’ Databases

Files and Exceptions ER model, relational model, SQL
Java Streams API

23

25

1.1 Algorithms

[Cormen et al, Kap. 1;0ttman/Widmayer, Kap. 1.1]

26

example problem

Input :
Output :

A sequence of n numbers (a1, as, ..., a,)
/

Permutation (a},a), ..., al) of the sequence (a;)1<i<n, such that
152 S
a/1<a/2<...<a;1

) n

Possible input
(1,7,3), (15,13,12,—-0.5), (1) ...

Every example represents a problem instance

The performance (speed) of an algorithm usually depends on the
problem instance. Often there are “good” and “bad” instances.

28

Algorithm

Algorithm: well defined computing procedure to compute output data
from input data

27

Examples for algorithmic problems

m Tables and statistis: sorting, selection and searching

m routing: shortest path algorithm, heap data structure

m DNA matching: Dynamic Programming

m fabrication pipeline: Topological Sorting

m autocompletion and spell-checking: Dictionaries / Trees

m Symboltables (compiler) : Hash-Tables

m The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing

m Drawing at the computer: Digitizing lines and circles, filling
polygons

m Page-Rank: (Markov-Chain) Monte Carlo ...

29

Characteristics

m Extremely large number of potential solutions
m Practical applicability

A dream

m If computers were infinitely fast and had an infinite amount of
memory ...

m ... then we would still need the theory of algorithms (only) for
statements about correctness (and termination).

Data Structures

m Organisation of the data tailored towards the algorithms that
operate on the data.

m Programs = algorithms + data structures.

The reality

Resources are bounded and not free:

m Computing time — Efficiency
m Storage space — Efficiency

33

Ancient Egyptian Multiplication?

Compute 11 -9
Double left, integer division

1.2 Ancient Egyptian Multiplication 119 911 by 2 on the right

2244 181 5 Even number on the right =
Ancient Egyptian Multiplication 442 362 eliminate row.

881 2 1 Add remaining rows on the

99| — 99
left.
2Also known as russian multiplication

Advantages Questions

m Short description, easy to grasp

m Efficient to implement on a computer: double = left shift, divide by
2 = right shift

m Does this always work (negative numbers?)?
m If not, when does it work?
m How do you prove correctness?

Beispiel m Is it better than the school method?
|
|

left shift 9 = 01001, — 100105 = 18 What does “good” mean at all?
right shift 9 = 01001 — 00100, = 4 How to write this down precisely?

36 37

Observation

Iifb>1,a € 7Z,then:

falls b gerade,
falls b ungerade.

38

Recursively, Functional

a falls b =1,
f(2a,%) falls b gerade,
a+ f(2a,%5) falls b ungerade.

fla,b) =

40

Termination

a falls b = 1,
a-b=142a-2 falls b gerade,
a+2a-51 falls b ungerade.

Implemented

// pre: b>0
// post: return axb
int f(int a, int b){
if (b==1)
return a;
else if (b%2 == 0)
return f(2%a, b/2);
else
return a + £(2xa, (b—1)/2);

41

Correctnes

a ifb=1,
f(2a,%) if b even,
a+ f(2a-%2) ifbodd.

fla,b) =

Proof by induction

Base clause: b=1= f(a,b) =a=a- 1.
Hypothesis: f(a,b') =a -0 fir0 < b <b

Step: fla,b+1) =a- (b+1)

Remaining to show: f(a,b) =a-bfora € Z,b € N .

Recursion vs. lteration

// pre: b>0
// post: return axb
int f(int a, int b){
if (b==1)
return a;
else if (b%2 == 0)
return f(2xa, b/2);
else
return a + f(2xa, (b—1)/2);

42

// pre: b>0
// post: return axb
int f(int a, int b) {
int res = 0;
while (b > 0) {
if (b % 2!'=0){

return res;

}

44

b+1
f(2a,)=a-(b+1) ifbodd,
a+ f(2a, 5)=a+a-b ifbeven.
N
<b
|

Invariants!
// pre: b>0
// post: return axb
int f£(int a, int b) { Seir:—a-b.

int res = 0;

while (b > 0) {
if (b % 2 !'=0){

res += a;

ifherex =a-b-+res ...

...thenalsoherez =a-b+res

*= 2;
2

)

oM

b even

}

here:x =a-b+ res

return res;

}

here:x=a-b+resundb=0
Also res = =.

45

Conclusion Analysis

The expression a - b + res is an invariant // pre: b>0
// post: return axb
m Values of a, b, res change but the invariant remains basically int f(int a, int b) { Ancient Egyptian Multiplication corre-
unchanged int res = 0; sponds to the school method with
. o - while (b > 0) { radix 2.
m The invariant is only temporarily discarded by some statement if (b % 2 1= 0){
but then re-established res += a; 1001 x 1011
. . b 1001 (9
m If such short statement sequences are considered atomiv, the } b; 100 1 (1(8;
value remains indeed invariant a k= 9 1 1011
m In particular the loop contains an invariant, called loop invariant b /=2; 1 001 (72)
and operates there like the induction step in induction proofs. ¥ . 1100011 (%)
return res,
m Invariants are obviously powerful tools for proofs! }
Efficiency
Question: how long does a multiplication of a and b take?
m Measure for efficiency
m Total number of fundamental operations: double, divide by 2, shift, test for
“even”, addition 11 i
m In the recursive and recursive code: maximally 6 operations per call or 2' EffICIency Of algorlthms
iteration, respectively
m Essential criterion: Efficiency of Algorithms, Random Access Machine Model, Function
a Number of recursion calls o Growth, Asymptotlcs [Cormen et al, Kap. 2.2,3,4.2-4.4 |
m Number iterations (in the iterative case) Ottman/Widmayer, Kap. 1.1]

| 2i < 1 holds for n > log, b. Consequently not more than 6[log, b|
fundamental operations.

48

Efficiency of Algorithms

Goals

m Quantify the runtime behavior of an algorithm independent of the
machine.

m Compare efficiency of algorithms.

m Understand dependece on the input size.

Asymptotic behavior

An exact running time can normally not be predicted even for small
input data.

m We consider the asymptotic behavior of the algorithm.
m And ignore all constant factors.

An operation with cost 20 is no worse than one with cost 1
Linear growth with gradient 5 is as good as linear growth with
gradient 1.

52

Technology Model

Random Access Machine (RAM)

m Execution model: instructions are executed one after the other (on
one processor core).

m Memory model: constant access time.

m Fundamental operations: computations (+,—,-,...) comparisons,
assignment / copy, flow control (jumps)

m Unit cost model: fundamental operations provide a cost of 1.

m Data types: fundamental types like size-limited integer or floating
point number.

2.2 Function growth

0, 6, Q2 [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]

51

Superficially

Use the asymptotic notation to specify the execution time of
algorithms.

We write ©(n?) and mean that the algorithm behaves for large n like
n?: when the problem size is doubled, the execution time multiplies
by four.

Graphic

More precise: asymptotic upper bound

provided: a function g : N — R.
Definition:

O(g) ={f: N=R|
de>0,n9 € N:0 < f(n) <c-g(n) Vn > ng}

Notation:

Examples

O(@) ={fN=>R| FJ¢>0,n0eN:0< f(n) <c-g(n)Vn >ng}

f(n) f€O(?) Example
3n+4 O(n) c=4,ny=14
2n O(n) c=2,n9=0
n?+100n O(n?) c=2,n9=100
n++n O(n) c=2n9=1

Property

f1€0(g), f>€ O(g) = fr + f> € O(g)

no

60

Converse: asymptotic lower bound

Given: a function g : N — RR.
Definition:

Qg) ={/ N = R|
de>0,neN:0<c-g(n) < f(n)Vn>mnp}

Asymptotic tight bound

Given: function g : N — R.
Definition:

O(g) :=2g) N O(g).

Simple, closed form: exercise.

61

Example Notions of Growth

o(1) bounded array access
O(loglogn) double logarithmic interpolated binary sorted sort
O(logn) logarithmic binary sorted search
O(y/n) like the square root naive prime number test
O(n) linear unsorted naive search
O(nlogn) superlinear/loglinear good sorting algorithms
O(n?) quadratic simple sort algorithms
-2 O(n®) polynomial matrix multiply
o2 exponential Travelling Salesman Dynamic Programming
O(n!) factorial Travelling Salesman naively
Small n Larger n.
: 106 on
1 1
0.8 |
0.6 |
0.4 | nt
0.2 |
2
n*
n

5 10 15 20 logn

64 65

“Large” n Logarithms

. 20 ¢
1 1,000 4 n’
2’1,
0.8 1 800
0.6 | 600 f
0.4 400 |
nlogn
0.2 | 200 |
n'n? "
n : == ‘ ‘ logn
20 40 60 80 1000ogn 10 20 30 40 50
Examples Useful Tool
= 1 € O(n) correct, but oo mprecise:

n € O(n) and even n € O(n).

Let f,g : N — R™ be two functions, then it holds that
m 3n? € O(2n?) correct but uncommon:

lim,, 0 2 = 0 = f € O(g), O(f) € O(g).

Omit constants: 3n? € O(n?). ?E”))
m 202 € O(n) iswrong: 2 = 25— oo | lim,, oo TZ) = C >0 (C constant) = f € O(g).
en ¢ n—oo
m O(n) C O(n?) is correct % = 0= g€ 0(f), Og) & Of)-

m O(n) C O©(n?) iswrong n & Q(n?) D O(n?)

68 69

About the Notation

Common notation

f=0(g)

should be read as f € O(g).
Clearly it holds that

Beispiel

fi=0(9), fo=O(g)# f1 = fo!

O(n?) but naturally n # n2.

70

Algorithms, Programs and Execution Time

Program: concrete implementation of an algorithm.

Execution time of the program: measurable value on a concrete
machine. Can be bounded from above and below.

Beispiel
3GHz computer. Maximal number of operations per cycle (e.g. 8). = lower bound.
A single operations does never take longer than a day = upper bound.

From an asymptotic point of view the bounds coincide.

7

