Informatik II

Übung 9

Andreas Bärtschi, Andreea Ciuprina, Felix Friedrich, Patrick Gruntz, Hermann Lehner, Max Rossmannek, Chris Wendler

FS 2018

Program Today

1 Last Week: BFS with Lazy Deletion

2 Adjacency List in Java, continued

3 Repetition of Lecture: Dijkstra's Algorithm

4 In-Class-Exercise

BFS with Lazy Deletion

}

```
public void BFS2(int s) {
       boolean visited[] = new boolean[V];
       LinkedList<Integer> queue = new LinkedList<Integer>();
       gueue.add(s);
       while (!queue.isEmpty()) {
              int u = queue.poll();
              if (!visited[u]) {
                      visited[u] = true;
                      System.out.print(u + " ");
                      for (int v : adj.get(u))
                             queue.add(v):
              }
```

BFS with Lazy Deletion

```
public void BFS2(int s) {
       boolean visited[] = new boolean[V];
       LinkedList<Integer> queue = new LinkedList<Integer>();
       queue.add(s);
       while (!queue.isEmpty()) {
              int u = queue.poll();
              if (!visited[u]) {
                      visited[u] = true;
                      System.out.print(u + " ");
                      for (int v : adj.get(u))
                             queue.add(v); <
              }
                                             A node is pushed to
       }
                                             Queue once for each
                                             incomina edae.
```

BFS with Lazy Deletion

```
public void BFS2(int s) {
       boolean visited[] = new boolean[V];
       LinkedList<Integer> queue = new LinkedList<Integer>();
       queue.add(s);
                                          Node marked as visited,
       while (!queue.isEmpty()) {
                                          but its copies are not
              int u = queue.poll();
                                          immediately removed from
              if (!visited[u]) {
                      visited[u] = true;
                                          Queue. ("Lazy Deletion")
                      System.out.print(u + " ");
                      for (int v : adj.get(u))
                             queue.add(v): <
              }
                                             A node is pushed to
                                             Queue once for each
                                             incomina edae.
```

Adjacency List Unweighted Graph

3

```
class Graph { // G = (V,E) as adjacency list
       private int V; // number of vertices
       private ArrayList<LinkedList<Integer>> adj; // adj. list
       // Constructor
       public Graph(int n) {
              V = n:
               adj = new ArrayList<LinkedList<Integer>>(V);
              for (int i=0: i<V: ++i)</pre>
                      adj.add(i,new LinkedList<Integer>());
       }
       // Edge adder method
       public void addEdge(int u, int v) {
              adj.get(u).add(v);
       }
```

Adjacency List weighted Graph

```
class Graph { // G = (V,E) as adjacency list
       private int V; // number of vertices
       private ArrayList<LinkedList<Pair>> adj; // adj. list
       // Constructor
       public Graph(int n) {
              V = n:
               adj = new ArrayList<LinkedList<Pair>>(V);
              for (int i=0: i<V: ++i)</pre>
                      adj.add(i,new LinkedList<Pair>());
       }
       // Edge adder method, (u,v) has weight w
       public void addEdge(int u, int v, int w) {
              adj.get(u).add(new Pair(v,w));
       }
```

Adjacency List weighted Graph

```
public class Pair implements Comparable<Pair> {
       public int key;
       public int value:
       // Constructor
       public Pair(int key, int value) {
              this.key = key;
              this.value = value;
       }
       @Override // we need this later...
       public int compareTo(Pair other) {
              return this.value-other.value:
       }
       // for general usage of pairs we would also need
       // to provide equals(), hashCode(), ...
```

Weighted Graphs

Given: $G = (V, E, c), c : E \to \mathbb{R}, s, t \in V.$ *Wanted:* Length (weight) of a shortest path from *s* to *t*. *Path:* $p = \langle s = v_0, v_1, \dots, v_k = t \rangle$, $(v_i, v_{i+1}) \in E$ $(0 \le i < k)$ *Weight:* $c(p) := \sum_{i=0}^{k-1} c((v_i, v_{i+1})).$

Path with weight 9

Assumption

Basic Idea

Set \boldsymbol{V} of nodes is partitioned into

- the set M of nodes for which a shortest path from s is already known,
- the set R = ⋃_{v∈M} N⁺(v) \ M of nodes where a shortest path is not yet known but that are accessible directly from M,
- the set $U = V \setminus (M \cup R)$ of nodes that have not yet been considered.

Induction

Induction over |M|: choose nodes from R with smallest upper bound. Add r to M and update R and U accordingly.

Correctness: if within the "wavefront" a node with minimal weight has been found then no path with greater weight over different nodes can provide any improvement.

Algorithmus Dijkstra

Initial: $PL(n) \leftarrow \infty$ für alle Knoten.

- **Set** $\operatorname{PL}(s) \leftarrow 0$
- Start with $M = \{s\}$. Set $k \leftarrow s$.

While a new node k is added and this is not the target node

1 For each neighbour node n of k:

compute path length x to n via k

- If $PL(n) = \infty$, than add n to R
- If $x < \operatorname{PL}(n) < \infty$, then set $\operatorname{PL}(n) \leftarrow x$ and adapt R.

2 Choose as new node k the node with smallest path length in R.

$$M = \{s\}$$
$$R = \{a, b\}$$
$$U = \{c, d, e\}$$

 $M = \{s, a\}$ $R = \{b, c\}$ $U = \{d, e\}$

 $M = \{s, a, b\}$ $R = \{c, d\}$ $U = \{e\}$

$$M = \{s, a, b, d\}$$
$$R = \{c, e\}$$
$$U = \{\}$$

$$M = \{s, a, b, d, e\}$$
$$R = \{c\}$$
$$U = \{\}$$

1

Implementation: Data Structure for *R*?

Required operations:

Insert (add to R)

ExtractMin (over *R*) and DecreaseKey (Update in *R*)

```
foreach v \in N^+(m) do

if d(m) + c(m, v) < d(v) then

d(v) \leftarrow d(m) + c(m, v)

if v \in R then

| DecreaseKey(R, v)

else

| R \leftarrow R \cup \{v\}
```

// Update of a $d(\boldsymbol{v})$ in the heap of R

// Update of $d(\boldsymbol{v})$ in the heap of \boldsymbol{R}

Implementation: Data Structure for *R*?

Required operations:

Insert (add to R)

ExtractMin (over R) and DecreaseKey (Update in R)

// Update of a $d(\boldsymbol{v})$ in the heap of R

 $//\ {\rm Update} \mbox{ of } d(v)$ in the heap of R

MinHeap!

DecreaseKey: climbing in MinHeap in O(log |V|)
Position in the heap (i.e. array index of element in the heap)?

- DecreaseKey: climbing in MinHeap in $\mathcal{O}(\log |V|)$
- Position in the heap (i.e. array index of element in the heap)?
 - alternative (a): Store position at the nodes

- DecreaseKey: climbing in MinHeap in $\mathcal{O}(\log |V|)$
- Position in the heap (i.e. array index of element in the heap)?
 - alternative (a): Store position at the nodes
 - alternative (b): Hashtable of the nodes

DecreaseKey: climbing in MinHeap in $\mathcal{O}(\log |V|)$

Position in the heap (i.e. array index of element in the heap)?

- alternative (a): Store position at the nodes
- alternative (b): Hashtable of the nodes
- alternative (c): re-insert node each time after update-operation and mark it as visited ("deleted") once extracted (Lazy Deletion)

- $|V| \times \text{ExtractMin: } \mathcal{O}(|V| \log |V|)$
- $\blacksquare |E| \times \text{ Insert or DecreaseKey: } \mathcal{O}(|E| \log |V|)$
- $\ \ \, 1\times \text{ Init: } \mathcal{O}(|V|)$
- Overal: $\mathcal{O}(|E| \log |V|)$.

Can be improved when a data structure optimized for ExtractMin and DecreaseKey ist used (Fibonacci Heap), then runtime $\mathcal{O}(|E| + |V| \log |V|)$.

- Memorize best predecessor during the update step in the algorithm above. Store it with the node or in a separate data structure.
- Reconstruct best path by traversing backwards via best predecessor

$$M = \{s\}$$
$$R = \{a, b\}$$
$$U = \{c, d, e\}$$

 $M = \{s, a\}$ $R = \{b, c\}$ $U = \{d, e\}$

 $M = \{s, a, b\}$ $R = \{c, d\}$ $U = \{e\}$

$$M = \{s, a, b, d\}$$
$$R = \{c, e\}$$
$$U = \{\}$$

$$A = \{s, a, b, d, e\}$$
$$R = \{c\}$$
$$U = \{\}$$

/

$$M = \{s, a, b, d, e, c\}$$

 $R = \{\}$
 $U = \{\}$

Finding a shortest path is easy (BFS, Dijkstra). Finding a long path is incredibly hard! For directed graphs, nobody knows how to even efficiently find paths of length $\gg \log^2 n$.

Finding a shortest path is easy (BFS, Dijkstra). Finding a long path is incredibly hard! For directed graphs, nobody knows how to even efficiently find paths of length $\gg \log^2 n$.

Exercise:

You are given a directed, **acyclic** graph (DAG) G = (V, E). Design an O(|V| + |E|)-time algorithm to find the longest path. Finding a shortest path is easy (BFS, Dijkstra). Finding a long path is incredibly hard! For directed graphs, nobody knows how to even efficiently find paths of length $\gg \log^2 n$.

Exercise:

You are given a directed, **acyclic** graph (DAG) G = (V, E). Design an O(|V| + |E|)-time algorithm to find the longest path. *Hint: G* is acyclic, meaning you can topologically sort *G*.

Solution:

1 Topological Sorting. Running time: $\mathcal{O}(|V| + |E|)$.

- **1** Topological Sorting. Running time: $\mathcal{O}(|V| + |E|)$.
- **2** Compute for each node all incoming edges: $\mathcal{O}(|V| + |E|)$.

- **1** Topological Sorting. Running time: $\mathcal{O}(|V| + |E|)$.
- **2** Compute for each node all incoming edges: $\mathcal{O}(|V| + |E|)$.
- 3 Visit each node v in topological order and consider all incoming edges: O(|V| + |E|).

- **1** Topological Sorting. Running time: $\mathcal{O}(|V| + |E|)$.
- **2** Compute for each node all incoming edges: $\mathcal{O}(|V| + |E|)$.

- **1** Topological Sorting. Running time: $\mathcal{O}(|V| + |E|)$.
- **2** Compute for each node all incoming edges: $\mathcal{O}(|V| + |E|)$.

Questions / Suggestions?