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Program Today

1 Last Week: BFS with Lazy Deletion

2 Adjacency List in Java, continued

3 Repetition of Lecture: Dijkstra’s Algorithm

4 In-Class-Exercise
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BFS with Lazy Deletion
public void BFS2(int s) {

boolean visited[] = new boolean[V];
LinkedList<Integer> queue = new LinkedList<Integer>();
queue.add(s);
while (!queue.isEmpty()) {

int u = queue.poll();
if (!visited[u]) {

visited[u] = true;
System.out.print(u + " ");
for (int v : adj.get(u))

queue.add(v);
}

}
}

A node is pushed to
Queue once for each
incoming edge.

Node marked as visited,
but its copies are not
immediately removed from
Queue. (“Lazy Deletion”)

3



BFS with Lazy Deletion
public void BFS2(int s) {

boolean visited[] = new boolean[V];
LinkedList<Integer> queue = new LinkedList<Integer>();
queue.add(s);
while (!queue.isEmpty()) {

int u = queue.poll();
if (!visited[u]) {

visited[u] = true;
System.out.print(u + " ");
for (int v : adj.get(u))

queue.add(v);
}

}
}

A node is pushed to
Queue once for each
incoming edge.

Node marked as visited,
but its copies are not
immediately removed from
Queue. (“Lazy Deletion”)

3



BFS with Lazy Deletion
public void BFS2(int s) {

boolean visited[] = new boolean[V];
LinkedList<Integer> queue = new LinkedList<Integer>();
queue.add(s);
while (!queue.isEmpty()) {

int u = queue.poll();
if (!visited[u]) {

visited[u] = true;
System.out.print(u + " ");
for (int v : adj.get(u))

queue.add(v);
}

}
}

A node is pushed to
Queue once for each
incoming edge.

Node marked as visited,
but its copies are not
immediately removed from
Queue. (“Lazy Deletion”)

3



Adjacency List Unweighted Graph
class Graph { // G = (V,E) as adjacency list

private int V; // number of vertices
private ArrayList<LinkedList<Integer>> adj; // adj. list
// Constructor
public Graph(int n) {

V = n;
adj = new ArrayList<LinkedList<Integer>>(V);
for (int i=0; i<V; ++i)

adj.add(i,new LinkedList<Integer>());
}
// Edge adder method
public void addEdge(int u, int v) {

adj.get(u).add(v);
}

}
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Adjacency List weighted Graph
class Graph { // G = (V,E) as adjacency list

private int V; // number of vertices
private ArrayList<LinkedList<Pair>> adj; // adj. list
// Constructor
public Graph(int n) {

V = n;
adj = new ArrayList<LinkedList<Pair>>(V);
for (int i=0; i<V; ++i)

adj.add(i,new LinkedList<Pair>());
}
// Edge adder method, (u,v) has weight w
public void addEdge(int u, int v, int w) {

adj.get(u).add(new Pair(v,w));
}

}
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Adjacency List weighted Graph
public class Pair implements Comparable<Pair> {

public int key;
public int value;
// Constructor
public Pair(int key, int value) {

this.key = key;
this.value = value;

}
@Override // we need this later...
public int compareTo(Pair other) {

return this.value−other.value;
}
// for general usage of pairs we would also need
// to provide equals(), hashCode(), ...

}
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Weighted Graphs
Given: G = (V,E, c), c : E → R, s, t ∈ V .
Wanted: Length (weight) of a shortest path from s to t.
Path: p = 〈s = v0, v1, . . . , vk = t〉, (vi, vi+1) ∈ E (0 ≤ i < k)
Weight: c(p) :=

∑k−1
i=0 c((vi, vi+1)).
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Basic Idea

Set V of nodes is partitioned into
the set M of nodes for which a
shortest path from s is already known,
the set R =

⋃
v∈M N+(v) \M of

nodes where a shortest path is not yet
known but that are accessible directly
from M ,
the set U = V \ (M ∪R) of nodes that
have not yet been considered.
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Induction

Induction over |M |: choose nodes from
R with smallest upper bound. Add r to M
and update R and U accordingly.

Correctness: if within the “wavefront” a
node with minimal weight has been found
then no path with greater weight over dif-
ferent nodes can provide any improve-
ment.
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Algorithmus Dijkstra

Initial: PL(n)←∞ für alle Knoten.

Set PL(s)← 0

Start with M = {s}. Set k ← s.
While a new node k is added and this is not the target node

1 For each neighbour node n of k:
compute path length x to n via k
If PL(n) =∞, than add n to R
If x < PL(n) <∞, then set PL(n)← x and adapt R .

2 Choose as new node k the node with smallest path length in R.
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Implementation: Data Structure for R?
Required operations:

Insert (add to R)
ExtractMin (over R) and DecreaseKey (Update in R)
foreach v ∈ N+(m) do

if d(m) + c(m, v) < d(v) then
d(v)← d(m) + c(m, v)
if v ∈ R then

DecreaseKey(R, v) // Update of a d(v) in the heap of R
else

R← R ∪ {v} // Update of d(v) in the heap of R

MinHeap!
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DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap (i.e. array index of element in the heap)?

alternative (a): Store position at the nodes
alternative (b): Hashtable of the nodes
alternative (c): re-insert node each time after update-operation and mark
it as visited ("deleted") once extracted (Lazy Deletion)
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Runtime

|V |× ExtractMin: O(|V | log |V |)
|E|× Insert or DecreaseKey: O(|E| log |V |)
1× Init: O(|V |)
Overal: O(|E| log |V |).

Can be improved when a data structure optimized for ExtractMin and
DecreaseKey ist used (Fibonacci Heap), then runtime
O(|E|+ |V | log |V |).
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Reconstruct shortest Path

Memorize best predecessor during the update step in the
algorithm above. Store it with the node or in a separate data
structure.
Reconstruct best path by traversing backwards via best
predecessor
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In-Class-Exercises: Longest Path in DAGs

Finding a shortest path is easy (BFS, Dijkstra). Finding a long path is incredibly
hard! For directed graphs, nobody knows how to even efficiently find paths of
length� log2 n.

Exercise:

You are given a directed, acyclic graph (DAG) G = (V,E).

Design an O(|V |+ |E|)-time algorithm to find the longest path.

Hint: G is acyclic, meaning you can topologically sort G.
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In-Class-Exercises: Longest Path in DAGs

Solution:

1 Topological Sorting. Running time: O(|V |+ |E|).

2 Compute for each node all incoming edges: O(|V |+ |E|).
3 Visit each node v in topological order and consider all incoming

edges: O(|V |+ |E|).

dist[v] =

0 no incoming edges,
max
(u,v)∈E

{dist[u] + c(u, v)} otherwise.

Store predecessor!
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Questions / Suggestions?
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