Informatik 1l
Ubung 8

Andreas Bartschi, Andreea Ciuprina, Felix Friedrich, Patrick Gruntz,
Hermann Lehner, Max Rossmannek, Chris Wendler

FS 2018

Program Today

Self-Assessment
Repetition Lectures: Adjacency Lists
Breadth-First-Search BFS

In-Class-Exercise

Last week: Self-Assessment

Punkte Selfassessment Informatik 11 (April 2018) NI’ DIffICU |ty N r-TOta|-COfT

1 58% of points 0.18
2 36% of points 0.23

: ‘ “| “ 3 3% of points 0.08

Last week: Self-Assessment

Punkte Selfassessment Informatik 11 (April 2018) NI’ DIffICU |ty N r-TOta|-COrr

1 58% of points 0.18
2 36% of points 0.23
3 3% of points 0.08

14 15 16 17 18 19 20 21 22 23 24 25 2 27 28 29 0 31 32 33 33 3 3

4
0123456789 01UB

For comparison: 20 points would correspond to a passing grade —in
the first year exam however, Exercise 3 would be graded with a more
fine-grained marking scheme.

13

Adjacency List

class Graph { // G = (V,E) as adjacency list
private int V; // number of vertices
private ArrayList<LinkedList<Integer>> adj; // adj. list
// Constructor
public Graph(int n) {
V = n;
adj = new ArrayList<LinkedList<Integer>>(V);
for (int i=0; i<V; ++i)
adj.add(i,new LinkedList<Integer>());
}
// Edge adder method
public void addEdge(int u,int v) {
adj.get(u) .add(v);
}

Adjacency List

Properties:

ArrayList
Get element in constant time.
LinkedList

Add element in constant time.
lterate over whole list in linear time.

Adjacency List

Properties:

ArrayList
Get element in constant time.
LinkedList
Add element in constant time.
Iterate over whole list in linear time.

- addEdge (u,v) = adj.get(u).add(v) runsin constant time O(1).

Adjacency List

Properties:
ArrayList
Get element in constant time.

LinkedList
Add element in constant time.
lterate over whole list in linear time.

- addEdge (u,v) = adj.get(u).add(v) runsin constant time O(1).
-for (int v : adj.get(u)) runsintime O(deg™(u)).

Breadth-First-Search BFS

BFS starting from a: BFS-Tree: Distances and Parents
D (D (D (a) i

\I S b), \I/ @) distance 0
D D)

w & L)

D (R (D

Breadth-First-Search BFS

BFS starting from a: BFS-Tree: Distances and Parents

(b)) c a distance 0
d e E e @ @ distance 1
O

Breadth-First-Search BFS

BFS starting from a: BFS-Tree: Distances and Parents

° c a distance 0
d \e> f b @ @ distance 1

@ @ @ e distance 2

Breadth-First-Search BFS

BFS starting from a: BFS-Tree: Distances and Parents

0 2 distance 0

k@ f @ distance 1

@ @ @ distance 2

Breadth-First-Search BFS

BFS starting from a: BFS-Tree: Distances and Parents
0 c distance 0

f distance 1

distance 2

Breadth-First-Search BFS

BFS starting from a: BFS-Tree: Distances and Parents

0 distance 0
f distance 1
@ @ @ distance 2

Breadth-First-Search BFS

BFS starting from a: BFS-Tree: Distances and Parents

0 distance 0
distance 1
@ @ @ distance 2

In-Class-Exercises: Route planning

Exercise: You are given

m a directed, unweighted Graph G = (V, F),
represented by an adjacency list,

m and a designated node t € V' (e.g., an emergency exit).
Design an algorithm,

m which computes for each node u € V' an outgoing edge in
direction of a shortest path to ¢.

m and has a running time of O(|V| + |E]).

In-Class-Exercises: Route planning

Solution:

B Make a copy of the graph with edges having reverse direction:
GT = (V,ET), where ET = {(v,u) | (u,v) € E}.
Running time: O(|V'| + | E]).
Start a breadth-first search of G, starting from ¢,
and store all edges of the BFS-Tree.
Running time: O(|V| + |ET|) = O(|V| + |E|).
Assign the stored edges (in reverse direction)
to the discovered nodes. Running time: O(|V]).

Questions / Suggestions?

	Self-Assessment
	Repetition Lectures: Adjacency Lists
	Breadth-First-Search BFS
	In-Class-Exercise

