Informatik 1l
Ubung 3

Andreas Bartschi, Andreea Ciuprina, Felix Friedrich, Patrick Gruntz,
Hermann Lehner, Max Rossmannek, Chris Wendler

FS 2018

Program Today

Feedback of last exercise
Repetition Theory

Next Exercise

Throwing eggs

m What would be your strategy if you would have an arbitrary
number of eggs?

Throwing eggs

m What would be your strategy if you would have an arbitrary
number of eggs?

m Binary search. Worst case: log, n tries.

Throwing eggs
m What would be your strategy if you would have an arbitrary
number of eggs?
m Binary search. Worst case: log, n tries.

m What would you do if you only had one egg?

Throwing eggs
m What would be your strategy if you would have an arbitrary
number of eggs?
m Binary search. Worst case: log, n tries.
m What would you do if you only had one egg?

m Start from the bottom. n tries.

Throwing eggs
m What would be your strategy if you would have an arbitrary
number of eggs?
m Binary search. Worst case: log, n tries.
m What would you do if you only had one egg?
m Start from the bottom. n tries.

m What would be your strategy if you only had two eggs?

Throwing eggs
m What would be your strategy if you would have an arbitrary
number of eggs?
m Binary search. Worst case: log, n tries.
m What would you do if you only had one egg?
m Start from the bottom. n tries.
m What would be your strategy if you only had two eggs?

m Use s tries.

m Use decreasing interval size

Bs+(s—1)+(s—2)+---+24+1=>" i= % > 100. Therefore
s = 14.

Throwing eggs
m What would be your strategy if you would have an arbitrary
number of eggs?
m Binary search. Worst case: log, n tries.
m What would you do if you only had one egg?
m Start from the bottom. n tries.
m What would be your strategy if you only had two eggs?

m Use s tries.

m Use decreasing interval size

Bs+(s—1)+(s—2)+---+24+1=>" i= % > 100. Therefore
s = 14.

= Vn

Hottest Path

int current = 0;
List<Integer> route = new ArrayList<Integer>();

route.add(0);
while (!food[current]) { // termination criterion

float max = —1;

int next = —1;
for (int j = 0; j < edges.length; ++j) {
if (edges[current] [j] '= O && max < popularity[current] [j1) {
max = popularity[current] [j];
next = j;
}
}

route.add (next) ;
current = next;

}

Sorting and Running Times

Algorithm Comparisons Swaps

average worst average worst

Bubble Sort \

Sorting and Running Times

Algorithm Comparisons Swaps

average worst ‘ average worst

Bubble Sort\ O(n?) O(n?) \

Sorting and Running Times

Algorithm Comparisons Swaps

average worst ‘ average worst
Bubble Sort | ©(n?) O(n?) | Om?) O(n?)
Selection

Sorting and Running Times

Algorithm Comparisons Swaps

average worst ‘ average worst
Bubble Sort | ©(n?) O(n?) O(n?) O(n?)
Selection O(n?) O(n?)

Sorting and Running Times

Algorithm Comparisons Swaps

average worst ‘ average worst
Bubble Sort | ©(n?) O(n?) O(n?) O(n?)
Selection O(n?) O(n?) O(n) O(n)
Insertion

Sorting and Running Times

Algorithm Comparisons Swaps

average worst average worst
Bubble Sort | ©(n?) O(n?) O(n?) O(n?)
Selection O(n?) O(n?) O(n) O(n)
Insertion O(nlogn) ©O(nlogn)

Sorting and Running Times

Algorithm Comparisons Swaps
average worst average worst
Bubble Sort | ©(n?) O(n?) O(n?) O(n?)
Selection O(n?) O(n?) O(n) O(n)
Insertion O(nlogn) O(nlogn) | ©O(n?) O(n?)

Quicksort

Sorting and Running Times

Algorithm Comparisons Swaps

average worst average worst
Bubble Sort | ©(n?) O(n?) O(n?) O(n?)
Selection O(n?) O(n?) O(n) O(n)
Insertion O(nlogn) O(nlogn) | ©O(n?) O(n?)
Quicksort | ©(nlogn) O(n?)

Sorting and Running Times

Algorithm Comparisons Swaps

average worst average worst
Bubble Sort | ©(n?) O(n?) O(n?) O(n?)
Selection O(n?) O(n?) O(n) O(n)
Insertion O(nlogn) O(nlogn) | ©O(n?) O(n?)
Quicksort | ©(nlogn) ©(n?) | O(nlogn) O(n?)
Mergesort | O(nlogn) ©(nlogn)

Sorting and Running Times

Algorithm Comparisons Swaps
average worst average worst
Bubble Sort | ©(n?) O(n?) O(n?) O(n?)
Selection O(n?) O(n?) O(n) O(n)
Insertion O(nlogn) O(nlogn) | ©O(n?) O(n?)
Quicksort | ©(nlogn) ©(n?) | O(nlogn) O(n?)
Mergesort | ©(nlogn) ©(nlogn) | ©(nlogn) ©O(nlogn)

Algorithm Quicksort(A|/, . .., 7]

Input : Array A with lengthn. 1 <[<r <n.
Output : Array A, sorted between [and r.
if [<r then

Choose pivot p € AL, ...,]
k < Partition(A[l, ..., 7], p)
Quicksort(A[l, ...,k —1])
Quicksort(A[k + 1,...,7])

Algorithm recursive 2-way Mergesort(A, [,)

Input : Array A with lengthn. 1 <1 <r<n

Output : Array All, ..., r] sorted.

if [<r then
m <+ |(I+71)/2] // middle position
Mergesort(A, [, m) // sort lower half
Mergesort(A,m + 1,r) // sort higher half

Merge(A, L, m,r) // Merge subsequences

Algorithm NaturalMergesort(A)

Input : Array A with length n > 0
Output : Array A sorted
repeat
r<0
while » < n do
[+—r+1
m < [; while m < n and Ajm + 1] > A[m] do m <~ m +1
if m <n then
r < m+1; while r <n and A[r +1] > A[rjdo r < r+1
Merge(A, I, m, r);

else
réi-n

until [=1

Stable and in-situ sorting algorithms

m Stabe sorting algorithms don’t change the relative position of
two elements.
5 2 6 6 8 4

—— not stable

2 4 5 6 6 8

Stable and in-situ sorting algorithms

m Stabe sorting algorithms don’t change the relative position of
two elements.
5 2 6 6 8 4

—— not stable

2 4 5 6 6 8

5 2 6 6 8 4

S~ stable
2 4 5 6 6 8

Stable and in-situ sorting algorithms

m Stabe sorting algorithms don’t change the relative position of
two elements.
5 2 6 6 8 4

—— not stable

2 4 5 6 6 8

5 2 6 6 8 4

S~ stable

2 4 5 6 6 8

m In-situ algorithms require only a constant amount of additional
memory.

Bonus Exercise

Questions / Suggestions?

	Feedback of last exercise
	Repetition Theory
	Next Exercise

