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Hottest Path

int current = 0;
List<Integer> route = new ArrayList<Integer>();

route.add(0);
while (!food[current]) { // termination criterion

float max = —1;

int next = —1;
for (int j = 0; j < edges.length; ++j) {
if (edges[current] [j] '= O && max < popularity[current] [j1) {
max = popularity[current] [j];
next = j;
}
}

route.add (next) ;
current = next;

}
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Algorithm Quicksort(A|/, . .., 7]

Input : Array A with lengthn. 1 <[ <r <n.
Output : Array A, sorted between [ and r.
if [ <r then

Choose pivot p € AL, ..., ]
k < Partition(A[l, ..., 7], p)
Quicksort(A[l, ...,k —1])
Quicksort(A[k + 1,...,7])



Algorithm recursive 2-way Mergesort(A, [, )

Input : Array A with lengthn. 1 <1 <r<n

Output : Array All, ..., r] sorted.

if [ <r then
m <+ |(I+71)/2] // middle position
Mergesort(A, [, m) // sort lower half
Mergesort(A,m + 1,r) // sort higher half

Merge(A, L, m,r) // Merge subsequences



Algorithm NaturalMergesort(A)

Input : Array A with length n > 0
Output : Array A sorted
repeat
r<0
while » < n do
[+—r+1
m < [; while m < n and Ajm + 1] > A[m] do m <~ m +1
if m <n then
r < m+1; while r <n and A[r +1] > A[rjdo r < r+1
Merge(A, I, m, r);

else
réi-n

until [ =1
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m In-situ algorithms require only a constant amount of additional
memory.



Bonus Exercise



Questions / Suggestions?
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