Informatik II

Vorlesung am D-BAUG der ETH Zürich

Vorlesung 11, 2017

Datenbanksysteme: Das Entity Relationship (ER) Modell, das Relationale Modell und SQL.

Literatur

Literatur: Kemper, Eickler: Datenbanksysteme: Eine Einführung. Oldenbourg Verlag, 9. Auflage, 2013.

Quellen: Basismaterial wurde von Prof. Donald Kossmann & Martin Kaufmann freundlicherweise zur Verfügung gestellt. Weitere Quelle: Folien zu *Datenbanksysteme: Eine Einführung*, Lehrstuhl III Datenbansysteme, Prof. Kemper, TU München

Ziele

Nutzen von Datenbanksystemen verstehen, Modellierungskenntnisse

- ER Modell (Modellierung der Weltsicht)
- Relationales Modell (Modellierung für die DB)

Datenbanksystem anwenden

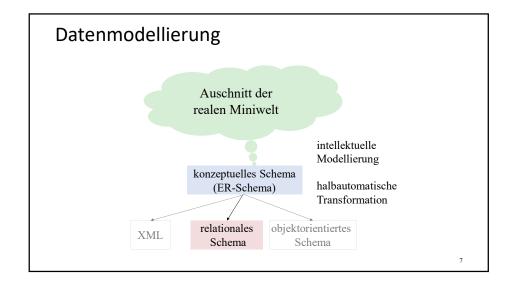
SQL

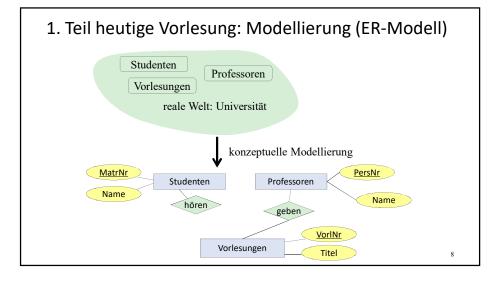
Datenbankverwaltungssysteme

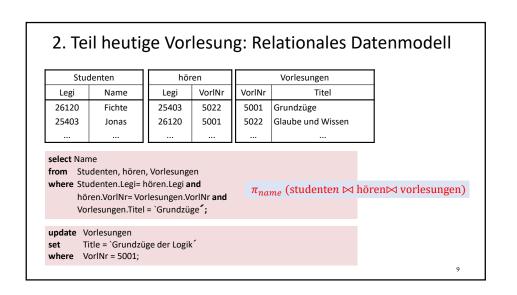
- Ein Datenbankverwaltungssystem (DBMS) ist ein Werkzeug zur Erstellung und Ausführung datenintensiver Anwendungen
- grosse Datenmengen
- grosse Datenströme

4

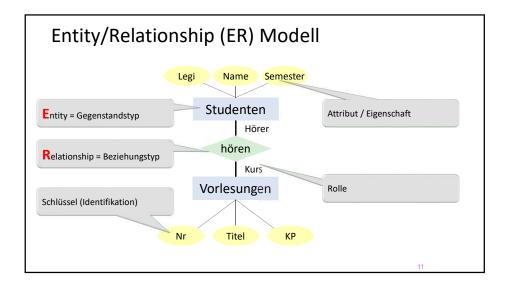
3

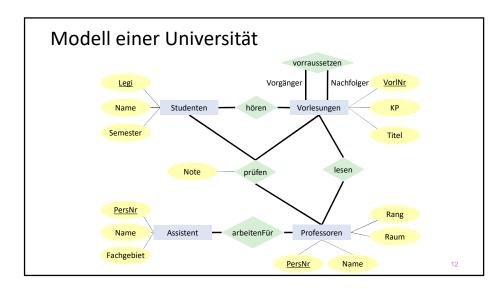

Typische Anwendungen


- Bank z.B. Konten / "Geldtransfer"
- Bibliothekz.B. Bücher / "Ausleihen"
- Facebook, Twitter, ...z.B. Freunde, "Sende Tweet"
- Geoinformationssysteme
 z.B. Topographische Information, "Erzeuge Karte"
- "Alles, was Sie mit einer Tabelle machen wollen, mit Excel nicht erledigen können und nicht selbst programmieren möchten".


Wozu Datenbanksysteme?

- Vermeide Redundanz und Inkonsistenz
- Deklarativer Zugriff auf die Daten und Unabhängigkeit von der Implementation (physische Datenunabhängigkeit)
- Synchronisiere gleichzeitigen Datenzugriff
- Sicherheit, Vertraulichkeit
- Minimiere Kosten und Aufwand
 Ähnliche Funktionalität selbst zu implementieren würde Jahre in Anspruch nehmen


.



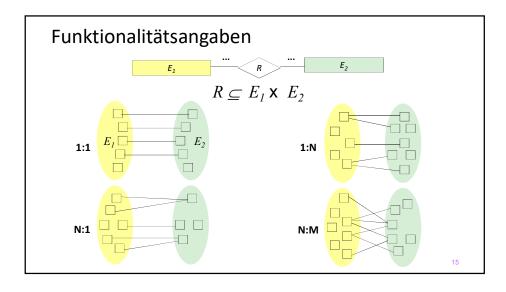
Entity Relationship Modell

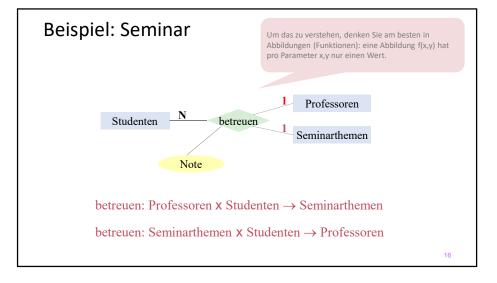
... in natürlicher Sprache

- Studenten haben LegiNr, Name und Semester. Die LegiNr identifziert einen Studenten eindeutig.
- Vorlesungen haben eine VorlNr, Kreditpunkte und einen Titel. VorlNr identifiziert eine Vorlesung eindeutig.
- Professoren haben PersNr, Name, Rang und Raum. PersNr identifiziert einen Professor eindeutig.
- Assistenten haben PersNr, Name und Fachgebiet. PersNr. identifiziert einen Assistenten eindeutig.
- Studenten hören Vorlesungen
- Vorlesungen können Voraussetzung für andere Vorlesungen sein.
- Professoren lesen Vorlesungen.
- Assistenten arbeiten für Professoren
- Studenten werden von Professoren über Vorlesungen geprüft. Studenten erhalten Noten als Teil dieser Prüfungen.
- Ist das die einzig mögliche Interpretation?
- Nein: zu einem ER-Model gehört immer noch Dokumentation und/oder gesunder Menschenverstand

13

Warum ER?


Vorteile


- ER Diagramme sind einfach zu erstellen und editieren
- ER Diagramme sind aufgrund der grafischen Darstellung einfach zu verstehen (vom Laien)
- ER Diagramme beschreiben alle Informationsanforderungen

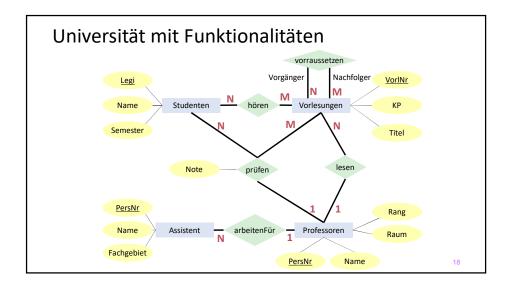
Allgemeines

- · Viele Tools verfügbar
- Kontroverse, ob ER/UML in der Praxis von Nutzen ist
- Keine Kontroverse, dass jeder ER/UML lernen sollte

14

.

Konsistenzbedingungen des Seminar


Einschränkungen

- Studenten dürfen bei einem Professor nur ein Seminarthema bearbeiten
- 2. Studenten können dasselbe Seminarthema nur einmal bearbeiten

Möglichkeiten

- 1. Professoren können das Seminarthema für andere Studenten wiederverwenden
- 2. Dasselbe Thema kann von verschiedenen Professoren verwendet werden

17

Daumenregeln

Wann Attribut, wann Entität?

- Entität, wenn das Konzept mehr als eine Beziehung hat
- Attribut, wenn das Konzept nur eine 1:1 Beziehung hat

Partitionierung von ER-Modellen

- Realistische Modelle sind grösser als eine Seite
- Nach Bereichen / Organisationseinheiten partitionieren
- Kein gutes automatisches Graphenpartitionierungstool bekannt

Tipps

- · Keine Redundanz modellieren
- Je weniger Entitäten desto bessei

ER Modellierung: Zusammenfassung

ER beschreibt eine Miniwelt

- Das "was" und die Regeln
- ER ist statisch. Es beschreibt keine Übergänge

Nützlich zum Erstellen von Software zur Beantwortung von (An)fragen über die Miniwelt

es folgt nun: ER-Modell → relationales Modell

Ähnliche Modellierungsmöglichkeiten bietet UML (mehr auf OOP zugeschnitten)

Auch andere graphische Darstellungen des ER Modells gebräuchlich, z.B. "Krähenfussnotation" optisch näher bei UML

20

Relationales Modell Die Welt in Tabellen

21

Relationales Modell, Formalismus

- Relation R
 - $R \subseteq D_1 \times ... \times D_n$
 - D₁, D₂, ..., D_n sind Domänen

Beispiel: Telefonbuch \subseteq string x string x integer

■ Tupel: $t \in R$

Beispiel: t = ("Mickey Mouse", "Main Street", 4711)

• Relationenschemata werden wie folgt beschrieben

Telefonbuch: {[Name: string, Strasse: string, Telefon#:integer]}

 $\{[...]\}$ deuten an, dass ein Schema eine Menge von Tupeln [] ist

Name des Attributes

Typ des Attributes

22

Relationales Modell

Telefonbuch								
Name	Strasse	<u>Telefon#</u>						
Mickey Mouse	Main Street	4711						
Minnie Mouse	Broadway	94725						
Donald Duck	Broadway	95672						

Ausprägung: Zustand der Datenbank

Schlüssel: minimale Menge von Attributen, welche ein Tupel eindeutig identifizieren z.B. {Telefon#} oder {Name, Geburtstag}

Primärschlüssel (durch Unterstreichung hervorgehoben): Ausgewählter Schlüssel, welcher üblicherweise zur Identifikation eines Tupels in einer Relation verwendet wird.

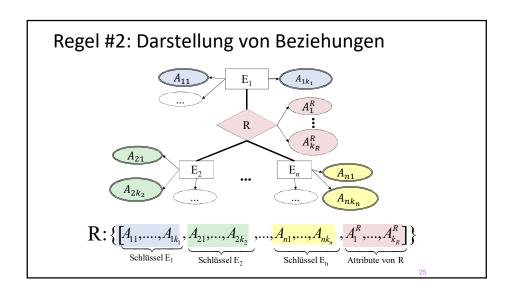
23

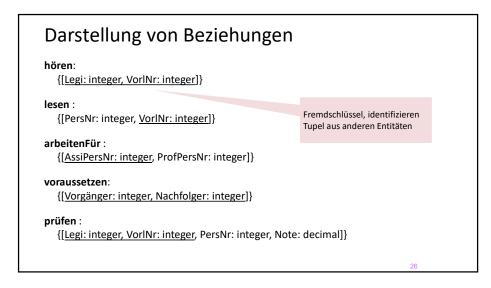
Regel #1: Darstellung von Entities

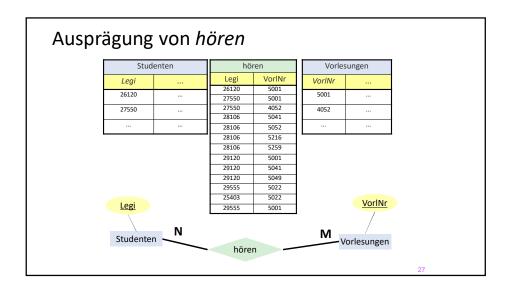
Studenten:

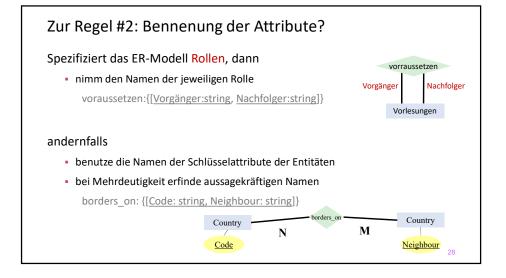
{[Legi:integer, Name:string, Semester: integer]}

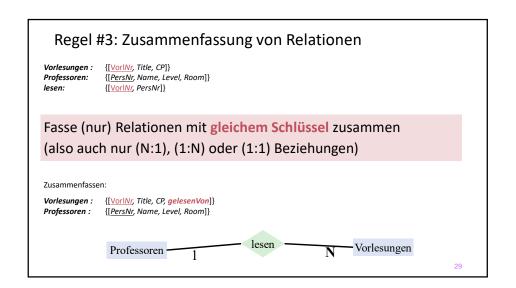
Vorlesungen:

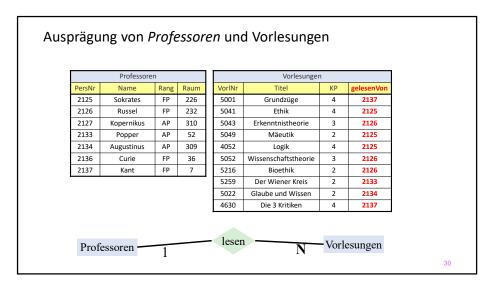

{[VorlNr:integer, Titel: string, KP: integer]}

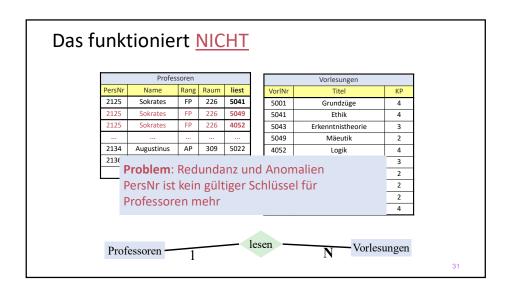

Professoren:

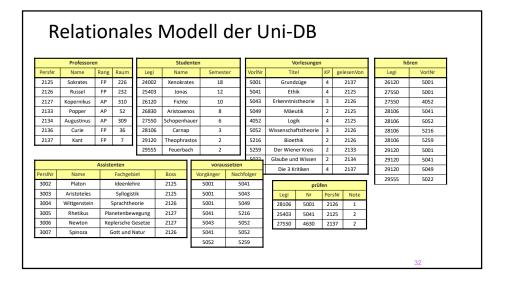

{[PersNr:integer, Name: string, Rang: string, Raum: integer]}


Assistenten:


{[PersNr:integer, Name: string, Fachgebiet: string]}







Die Relationale Algebra und SQL

Die relationale Algebra

♂ Selektion

 π Projektion

× kartesisches Produkt

Our Design of the Control of the

34

werden wir nicht diskutieren

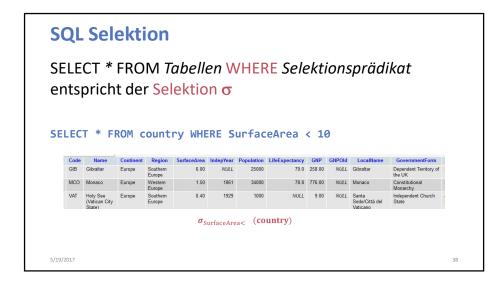
SQL (Structured Query Language)

Nachfolger von Sequel = Structured English Query Language

Familie von Standards

- Anfrage- (Query)-Sprache Anfragen
- Datendefinitionssprache (DDL) Schemas
- Datenmanipulationssprache (DML) Updates

SQL implementiert die Relationale Algebra


Selektion σ

Auswahl von Tupeln (**Zeilen**) der Relation (Tabelle), so dass das **Selektionsprädikat** jeweils erfüllt ist.

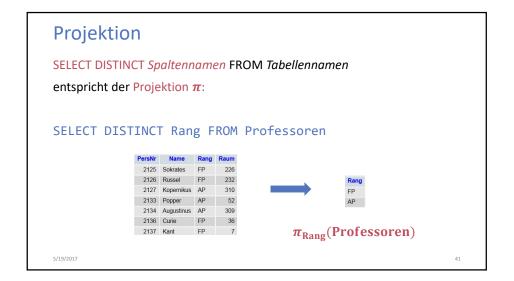
$\sigma_{\text{Semester} > 10}$ (Studenten)								
Legi Name Semester								
24002	Xenokrates	18						
25403	Jonas	12						

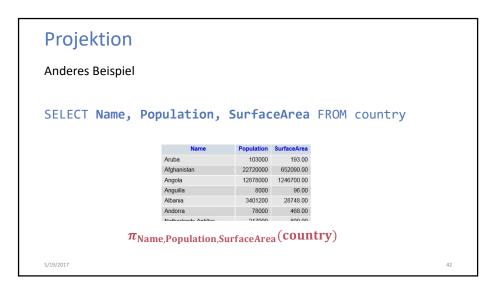
36

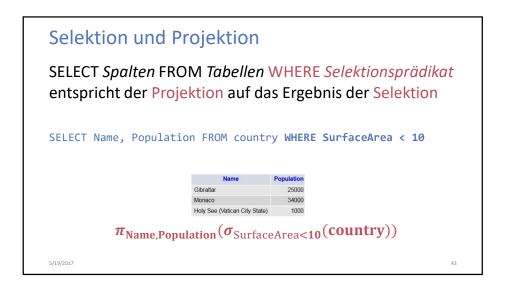
Projektion π

5/19/2017

Extraktion von Attributen (**Spalten**) der Relation (Tabelle)


Einfaches SQL Statement


SELECT Spaltennamen FROM Tabellennamen
entspricht der Projektion π ohne Duplikatelimination:


SELECT Rang FROM Professoren

Persyl Name Rang Raum
2125 Sokrates FP 228
2127 Kopernikus AP 310
2133 Popper AP 52
2121 Augustinus AP 310
2133 Curie FP 36
2131 Kant FP 7

4.0

Kartesisches Produkt ×

• enthält alle $|L|\cdot|R|$ mögliche Paare von Tupeln aus L und R

	L			R				L×F	2		
Α	В	С		D	Е	_		L		F	₹
a_1	b_1	c_{1}	X	d_1	e ₁	_	Α	В	C	D	Е
a ₂	b ₂	C ₂		d_2	e ₂		a_1	b_1	$c_{\scriptscriptstyle 1}$	d_1	e_1
							a_1	b_1	$c_{\scriptscriptstyle 1}$	d ₂	e ₂
							a ₂	b ₂	C ₂	d_1	e_1
							a ₂	b ₂	C ₂	d ₂	e ₂

Kartesisches Produkt

Professoren × hören									
	hö	ren							
PersNr	Name	Rang	Legi	Nr					
2125	Sokrates	FP	226	26120	5001				
2125	Sokrates	FP	226	29555	5001				
2137	Kant	FP	7	29555	5001				

Riesiges Ergebnis (|Professoren| · |hören|)

Wird meist in Verbindung mit Selektion eingesetzt → Vermeidung riesiger Zwischenergebisse durch Einführung eines separaten Operators (Join)

Kartesisches Produkt

SELECT ... FROM Tabelle1, Tabelle2 ...

entspricht dem kartesischen Produkt Tabelle1 × Tabelle2

SELECT * FROM studenten, hören

Umbenennung von Attributen

SELECT ... Name as NeuerName ... FROM Tabellen ...

SELECT Titel, gelesenVon as Dozent FROM Vorlesungen

Legi	Name	Semester	Legi	VorINr
24002	Xenokrates	18	26120	5001
25403	Jonas	12	26120	5001
26120	Fichte	10	26120	5001
26830	Aristoxenos	8	26120	5001
27550	Schopenhauer	6	26120	5001
28106	Carnap	3	26120	5001
29120	Theophrastos	2	26120	5001
29555	Feuerbach	2	26120	5001
4711	Unbekannter	NULL	26120	5001
24002	Xenokrates	18	27550	5001
25403	Jonas	12	27550	5001
26120	Fichte	10	27550	5001

studenten × hören

Umbenennung p

Umbenennung von Relationen

Ermittlung indirekter Vorgänger 2. Stufe der Vorlesung 5216

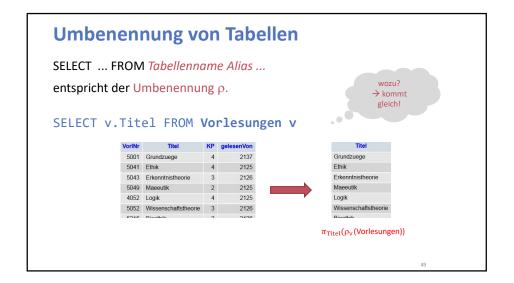
 $\Pi_{\rm V1.\ Vorg\"{a}nger(}$

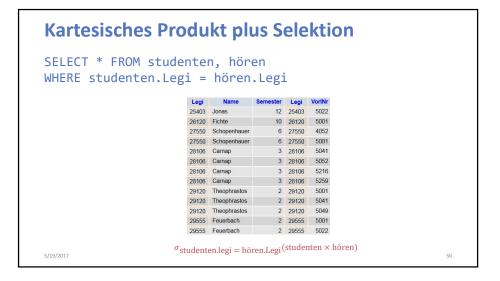
 $\sigma_{V2. \ Nachfolger=5216 \ \land \ V1. Nachfolger= \ V2. Vorgänger}$

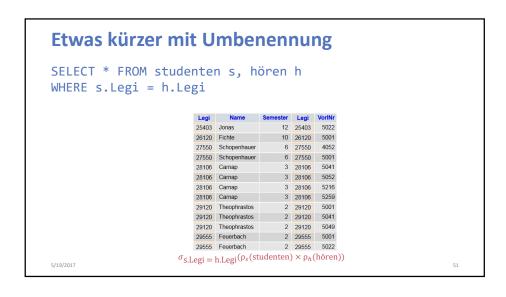
 $(\rho_{V1} \text{ (voraussetzen)} \times \rho_{V2} \text{ (voraussetzen))})$

Umbennung von Attributen p

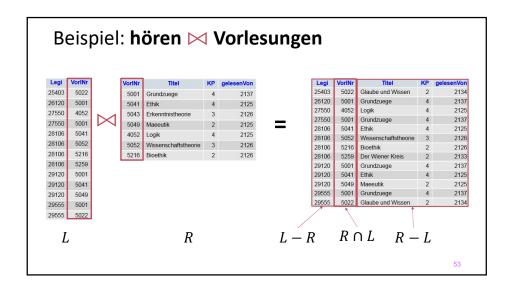
 $\rho_{\text{Voraussetzung} \leftarrow \text{Vorgänger}} \text{(voraussetzen)}$

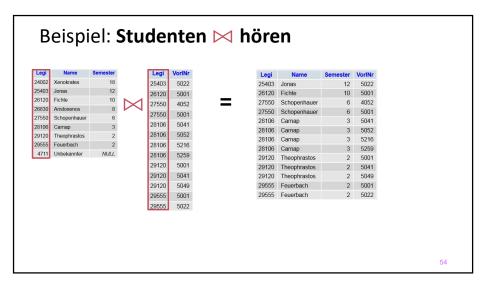

2125 5052 Wissenschaftstheorie 3

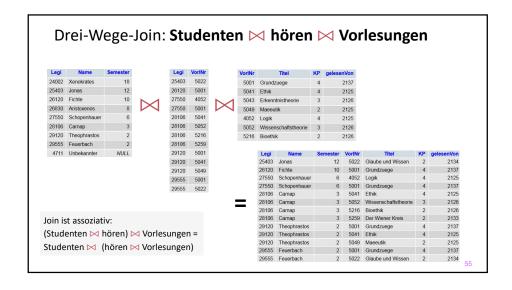

entspricht der Umbenennung ρ .


5/19/2017

2137 Erkenntnistheorie 2126


 $\pi_{Titel,Dozent}(\rho_{gelesenVon \leftarrow Dozent}(Vorlesungen))$





Der natürliche Verbund (Join) ⋈										
Gegeben Relationen: $ R(A_1,,A_m,B_1,,B_k) $ $ S(B_1,,B_k,C_1,,C_n) $										
$R\bowtieS=\Pi_{A_1}$	$R\bowtie S = \Pi_{A_1,\dots,A_m,R.B_1,\dots,R.B_k,C_1,\dots,C_n} $ $(\sigma_{R.B_1=S.B_1\wedge\dots\wedge R.B_k=S.B_k}(R\times S))$									
	$R\bowtie S$									
	$R-S$ $R\cap S$ $S-R$									
A	$A_1 \mid A_2 \mid \dots \mid A_m \mid B_1 \mid B_2 \mid \dots \mid B_k \mid C_1 \mid C_2 \mid \dots \mid C_n$									
<u>:</u>										

. .

Allgemeiner Join (Theta-Join)

Gegeben Relationen(-Schemata) R(A1, ..., An) und S(B1, ..., Bm)

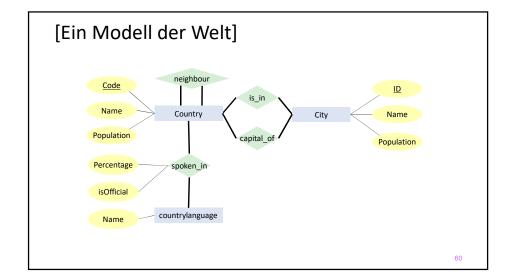
$$R \bowtie_{\theta} S = \sigma_{\theta} (R \times S)$$

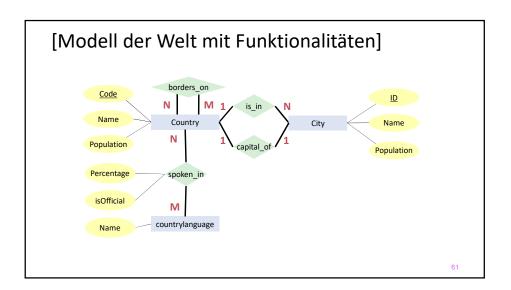
	$R\bowtie_{\scriptscriptstyle{\theta}}\!S$											
	F	λ .			9	5						
A ₁	A ₂		A _n	B ₁	B ₂		B _m					
:			:	:	:	:	:					

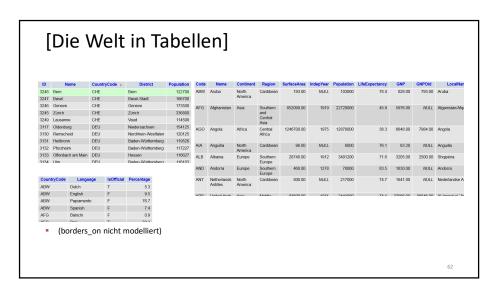
Beispiel: Allgemeiner Join

Züge(name, start, ziel, ..., länge) Relationen

Gleise(station, nummer, ..., länge)


Finde alle möglichen Gleise für den "CIS Alpino" in Zürich


 $\sigma_{\text{station}=,Z\ddot{\text{urich}}^{\text{"}}}$ (Gleise)


⊠ Züge.länge < Gleise.länge

 $\sigma_{\text{name=,,CIS"}}$ (Züge)

ANHANG: WELT-DATENBANK

