
Übungen zur Vorlesung Informatik II (D-BAUG) FS 2017
D. Sidler, F. Friedrich

http://lec.inf.ethz.ch/baug/informatik2/2017

Solution to exercise sheet # 10 15.5.2017 – 23.5.2017

Problem 10.1. Online Median
For this task open the project on codeboard: https://codeboard.ethz.ch/inf2baugex10t01

In the exercise you learned about how Heaps could be used to implement an Online Median Heap. Your
task for the first part of this exercise is to implement exactly this algorithm. First study the code of
ArrayHeap.java which was partially introduced in the exercise session. Then complete two functions
in OnlineMedian.java. Start of with

public void Insert (double value) { .. }

Next you should complete the method:
public double GetMedian() { ... }

Do not be surprised if your solution for this method is very short - it is supposed to be like this.
To test your implementation, you can use the following commands which are implement in the Main
class:

insert 5.5
median

The insert command takes a value (5.5) and inserts into the heap. The median command returns
the median of all values currently in the heap.
To run the automatic test, un-comment the annotation @RunTests at the beginning of the class Main.
Once you pass the automatic test you can submit your program.

Solution of Problem 10.1.

public void Insert(double value) {
if (minHeap.size() == 0 || value > minHeap.GetRoot()) {

minHeap.Insert(value);
} else {

maxHeap.Insert(value);
}
n++;
if (maxHeap.size() < n/2) {

maxHeap.Insert(minHeap.ExtractRoot());
} else if (maxHeap.size() > n/2) {

minHeap.Insert(maxHeap.ExtractRoot());
}

}

public double GetMedian() {
if (n%2 == 0) {

return (minHeap.GetRoot() + maxHeap.GetRoot()) / 2;
} else {

return minHeap.GetRoot();
}

}

Problem 10.2. Dijkstra’s Algorithm
Within the second part of this exercise we asked you to implement Dijkstra’s shortest path algorithm
that was also introduced in the lecture, please open the code template at https://codeboard.ethz.

http://lec.inf.ethz.ch/baug/informatik2/2017
https://codeboard.ethz.ch/inf2baugex10t01
https://codeboard.ethz.ch/inf2baugex10t02

Übungen zur Vorlesung Informatik II (D-BAUG), Blatt 10 2

ch/inf2baugex10t02. While all parts that are needed for the implementation have been demonstrated
in the lecture already, we recommend that you again study

• Edge.java - implementation of an edge of the graph

• Node.java - implementation of a node within the graph

• Heap.java - a heap implementation as seen in the previous task. Required for the algorithm

Once you familiarized yourself with the code, you should try to complete the method ShortestPath
inside Graph.java.
Since the code is a bit more involved then most code you have seen so far we basically just left out
gaps in the algorithm and your task is to fill them in. Use the visual illustration of the algorithm from
the lecture for help. Every ??? should only require a single line of code to fill it. See next page for the
code with the gaps.
To test your implementation, you can use the following commands which are implement in the Main
class:

edge a b 8
path a b

The edge command insert a new edge from a to b with distance 8 into the graph. The path finds the
shortest path from a to b and prints it out.
To run the automatic test, un-comment the annotation @RunTests at the beginning of the class Main.
Once you pass the automatic test you can submit your program.

https://codeboard.ethz.ch/inf2baugex10t02
https://codeboard.ethz.ch/inf2baugex10t02
https://codeboard.ethz.ch/inf2baugex10t02

Übungen zur Vorlesung Informatik II (D-BAUG), Blatt 10 3

public Vector<Node> ShortestPath(Node S, Node E) {
//we start of by traversing through all nodes
for (Node node : nodes) {

??? //for each node update its pathlen value to Integer .MAX VALUE
??? //and set its parent node to null

}

??? //create a vector to store the path
??? //create a Heap to work with during the algorithm
??? //set the path length at the startnode to 0
Node newNode = start;

while (newNode != null && newNode != end) {
Vector<Edge> edges = ??? //get all the edges from the newNode

//for each of the edges
for (Edge edge : edges) {
??? // calculate the length the newNode plus this edge length
??? //get the Node that we would reach with this edge
??? //get the PathLength that node had so far (the one we just reached)
if (newLength < prevLength) { //if previous is longer (which is always true if we did not

visit that node yet)
??? //set its length to the newly calculated length
???//set its parent to the node we just came from
if (prevLength == Integer.MAX VALUE) { // we did not see this node yet

??? // therefore we would like to insert it to the heap
} else {

??? //otherwise update its value in the heap
}

}
}
newNode = ??? //we then continue by taking node with shortest path out of the heap (the root)

//and the simply continue the loop from there
}

//now we backtrack from the final node
while (newNode != null) {

path.add(newNode);
newNode = newNode.GetPathParent();

}

return path;
}

Übungen zur Vorlesung Informatik II (D-BAUG), Blatt 10 4

Solution of Problem 10.2.

public Vector<Node> ShortestPath(Node start, Node end) {
//we start of by traversing through all nodes
for (Node node : nodes) {

node.SetPathLen(Integer.MAX_VALUE); //for each node update its pathlen
value to Integer.MAX_VALUE

node.SetPathParent(null); //and set its parent node to null
}

Vector<Node> path = new Vector<Node>(); //create a vector to store the path
Heap R=new Heap(); //create a Heap to work with during the algorithm
start.SetPathLen(0); //set the path length at the startnode to 0
Node newNode = start; //create a new node

while (newNode != null && newNode != end) {
Vector<Edge> edges = newNode.Edges(); //get all the edges from the

newNode

//for each of the edges
for (Edge edge : edges) {

int newLength = newNode.GetPathLen() + edge.GetLength(); //calculate
the length the newNode plus this edge length

Node dest = edge.GetDestination(); //get the Node that we would reach
with this edge

int prevLength = dest.GetPathLen(); //get the PathLength that node
had so far

if (newLength < prevLength) { //if previous is longer (which is
always true if we did not visit that node yet)
dest.SetPathLen(newLength); //set its length to the newly

calculated length
dest.SetPathParent(newNode); //set its parent to the node we just

came from
if (prevLength == Integer.MAX_VALUE) { // we did not see this

node yet
R.Insert(dest); //therefore we would like to insert it to the

heap
} else {

R.DecreaseKey(dest); //otherwise update its value in the heap
}

}
}
newNode = R.ExtractRoot(); //we then continue by taking node with

shortest path out of the heap (the root)
//and the simply continue the loop from there

}

//now we backtrack from the final node
while (newNode != null) {

path.add(newNode);
newNode = newNode.GetPathParent();

}

return path;

Übungen zur Vorlesung Informatik II (D-BAUG), Blatt 10 5

}

Problem 10.3. Depth-first-search and breadth-first-search
Both depth-first-search (DFS) and breadth-first-search (BFS) admit a certain degree of freedom: one
may choose the order in which the neighbors of a vertex are considered. For the graph shown below,
let us assume that both DFS and BFS visit the neighbors of a vertex in alphabetical order.

A

B

C D

E

FG

H

1. Give the DFS and BFS ordering of the graph (i.e., the sequence in which the vertices are visited
by DFS and BFS, respectively), starting from vertex A.

2. Is there a starting vertex in this graph from which the DFS ordering is the same as the BFS
ordering?

Submission link: https://codeboard.ethz.ch/inf2baugex10t03

Solution of Problem 10.3.

1. DFS: A, B, C, D, E, F, H, G

BFS: A, B, F, C, H, D, G, E

2. No, the orders are different for all starting vertices.

https://codeboard.ethz.ch/inf2baugex10t03

