
Übungen zur Vorlesung Informatik II (D-BAUG) FS 2017
D. Sidler, F. Friedrich

http://lec.inf.ethz.ch/baug/informatik2/2017

Solution to exercise sheet # 7 3.4.2017 – 11.4.2017

Problem 7.1. FIFO List
In this exercise we adapt the Stack (Stapel) implementation which was presented during class with the
functionality of a First-in-First-out List. This means we insert elements at one end, while removing them
from the other end. You can find the code template of the assignment here: https://codeboard.
ethz.ch/inf2baugex07t01
As shown in class, the list consists of two classes.
public class ListNode {

private int data;
private ListNode next;
... // Constructors + Access methods + toString

}

represents a single element of the list and its data.
The class FifoList uses objects of ListNode, in order to store a list of integer-numbers. It has the
following structure:
public class FifoList {

private ListNode first; // reference of the first element
private ListNode last; // reference of the last element

public FifoList() // constructor
public String toString() // human readable form
public void insert(int data) // insert an element
public int remove() // get "oldest" element and delete it from List

}

Your first task is to implement the two methods toString and insert. Before you start coding have
a look at the following figure

first last

null

and think about the following: Given that you can only reach an element by following the directed
arrows starting from either first or last

• Which side is the easiest to enter a new element?

• Which side is the easiest to delete an element?

Keep in mind that for both operations you might also need to change arrows of predecessors in the
chain. (There should be a clear preferred side to insert, and the opposite side should clearly be the
better to delete)
To test your implementation we provide main function which reads in the following commands:

push 12
pop

The push command inserts the given value, in this example 12. The pop command removes an element
and returns it.

http://lec.inf.ethz.ch/baug/informatik2/2017
https://codeboard.ethz.ch/inf2baugex07t01
https://codeboard.ethz.ch/inf2baugex07t01


Übungen zur Vorlesung Informatik II (D-BAUG), Blatt 7 2

Figure 1: different states a FiFo list can be in (from left to right)

1. An empty FiFo list - first and last are both null

2. An FiFo list with only a single element - first and last are equal

3. A FiFo list with at least two or more elements

Insert

//pre: the list with m elements,
// where m can be any positive integer including 0 (empty list)
//post: the list with m+1 elements, with one element added by you
// (ListNode with data "n")
public void insert(int n)

Take care that you cover all cases of states the list can be in as sketched in 1, such that inserting an
element works for each of those cases. Also note that inserting

• in state 1 should bring you to state 2

• in state 2 should bring you to state 3

• in state 3 should keep you in state 3 but with one more element

Converting the list into a printable string
Your next task is to fill the method:

//pre: -
//post: return a string that is simply the concatenation of calling
// the toString method of all list elements.
// make sure that you print in insertion order.
public String toString()

To implement this method you will have to traverse the list. You start by creating an empty string
and then, while traversing the list, call the toString method of each element. After each call you
concatenate the string with your result so far. Pay attention that you print your list in the insertion
order (first inserted first, last inserted last).

You can validate your implementation of toString and insert by un-commenting the annotation
@RunTests. You should already pass the two tests Insert 1 and Insert 2. To pass the remaining
tests you have to implement the remove functionality described below.

Remove (removing oldest element)

Your final task is to implement the routine Remove which will remove the oldest element.



Übungen zur Vorlesung Informatik II (D-BAUG), Blatt 7 3

//pre: the list with m elements,
// where m can be any positive integer including 0 (empty list)
//post: if the list is empty return 0 and leave the list empty,
// otherwise return the "data" value of the oldest element
// and remove it from the list
public int remove()

Your Remove routine has to remove on the opposite end of where your Insert method inserts elements.
Also in this case make sure that you cover each case your list can be in. Make sure that you re-adjust
the pointers first/last accordingly after removing an element.
You can check your complete implementation (insert, toString and remove in combination) by un-
commenting the annotation @RunTests again. Now you should be able to pass all tests.

Solution of Problem 7.1.

class FiFoList {
private ListNode first; // reference of the first element
private ListNode last; // reference of the last element (aids fast

adding)

public FiFoList() {
first = null; //
last = first; // indicates an empty list (both first and last are

null)
}

//pre: -
//post: return a string that is simply the concatenation of calling
// the toString method of all list elements.
// make sure that you print in insertion order
public String toString() {

ListNode le = first; // starting point
String str = "";
while (le != null) {

str += le.toString(); // adds the Strings
le = le.next(); // go from one element to the next one

}
return str;

}

//pre: the list with m elements, where m can be any positive integer
including 0 (empty list)

//post: the list with m+1 elements, with one element added by you
(ListNode with data "n")

// you can choose on which side you add the element, as long
you remove from the other and traverse correctly

// when printing
public void insert(int n) {

ListNode le = new ListNode(n,null); // create new element
//this assumes that both have to null at the same time always
if (last == null) {

first = le;
last = le;

}
else {



Übungen zur Vorlesung Informatik II (D-BAUG), Blatt 7 4

last.setNext(le);
last = le;

}
}

//pre: the list with m elements, where m can be any positive integer
including 0 (empty list)

//post: if the list is empty return 0 and leave the list empty,
// otherwise return the "data" value of the oldest element

and remove it from the list
public int remove() {

if(first == null) {
return 0;

}
else {

ListNode le = first;
// in case we only have one element
if (last == first) {

first = last = le.next();
}
else {

first = le.next();
}
return le.getData();

}
}

}


