
Übungen zur Vorlesung Informatik II (D-BAUG) FS 2017
D. Sidler, F. Friedrich

http://lec.inf.ethz.ch/baug/informatik2/2017

Solution to exercise sheet # 4 13.3.2017 – 21.3.2017

Problem 4.1. Recursive Function Analysis
For the following two recursive functions:

(a) boolean f (int n) {
if (n == 0) {

return false;
}
return !f(n-1);

}

(b) void g (int n) {
if (n == 0) {

System.out.printf("*");
return;

}
g(n-1);
g(n-1);

}

i. Formulate pre- and postconditions.

ii. Show that the function terminates (under preconditions of i.).

iii. Determine the number of functions calls as (mathematical) function of parameter n.

Submission link: https://codeboard.ethz.ch/inf2baugex04t01

Solution of Problem 4.1.

i. (a) // PRE: n >= 0
// POST: return value is false if n is even and true if n is odd

(b) // PRE: n >= 0
// POST: 2ˆn stars have been written to standard output

ii. (a) The function f immediately terminates for n == 0. With each recursive call n is decre-
mented, i.e., f is called with parameter < n, eventually reaching n = 0.

(b) The function g immediately terminates for n == 0. With each recursive call n is decre-
mented, i.e., g is called with parameter < n, eventually reaching n = 0. This is true for
both recursive calls of g.

iii. Note: The following formulas include the first (non-recursive) functional call.

(a) Callsf (n) = n + 1
(b) Callsg(n) =

∑n
i=0 2i = 2n+1 − 1

Problem 4.2. Money
In how many ways can you own CHF 10? Despite its somewhat philosophical appearance, the question
is a mathematical one. Given some amount of money, in how many ways can you partition it using the
available denominations (bank notes and coins)? Today’s denominations in CHF are 1000, 200, 100,
50, 20, 10 (banknotes), 5, 2, 1(coins). Note we ignore values below CHF 1. The amount of CHF 4,
for example, can be owned in four ways: (2, 2), (2, 1, 1), (1, 1, 1, 1).
Solve the problem for a given input amount, by writing the following function.

// PRE: billsAndCoins is array of bill and coins values, start is an index into
this array, the array is sorted such that billsAndCoins[i] >
billsAndCoins[i+1] > .. > 0

// POST: return value is the number of ways to partition amount

http://lec.inf.ethz.ch/baug/informatik2/2017
https://codeboard.ethz.ch/inf2baugex04t01

Übungen zur Vorlesung Informatik II (D-BAUG), Blatt 4 2

// using billsAndCoins beginning at index start
public static int partition(int amount,

int[] billsAndCoins,
int start);

To allow you to focus on implementing the recursive function partition, we provide you with the
template code that implements all functionality except the said function. The input is the amount in
CHF as int and the expected output is the number of ways that amount can be owned as int.

ETH Codeboard link: https://codeboard.ethz.ch/inf2baugex04t02
Once you have implemented the partition function, you can test your program by un-commenting the
annotation @RunTests. If you pass the test you can submit your program.

Solution of Problem 4.2.
The solution below implements the following idea: Suppose you owe an amount of CHF 5. Then you
can either use a CHF 5 coin to directly pay the amount (1 way), or you can pay a first part using a
smaller coin, let’s say CHF 2, and you still owe CHF 3. Now you have to compute (recursively) the
number of ways how CHF 3 can be partitioned.
There is a small twist: if you first pay back CHF 1, you still owe CHF 4. If you now simply compute
the number of ways CHF 4 can be partitioned, you will also count partitions that use coins of CHF 2.
Let’s say the partition (1 × CHF 1, 1 × CHF 2, 2 × CHF 1). But this partition can also be realized
by first paying CHF 2, and then 3 × CHF 1, thus it will be counted at least twice (once when you first
pay CHF 2, and when you first pay CHF 1). In order to not count a partition twice, we only count
partitions of the remaining amount that do not use coins that are larger than the first used coin. In
this way, we will count the partition (1 × CHF 2, 3 × CHF 1) only once, namely when we first pay
CHF 2 but not when we first pay CHF 1.
The number of ways in which you can own CHF 5 is 4, and CHF 10 can be owned in 11 ways. The
above program becomes very slow for larger values, since during the recursive calls, many values are
computed over and over again. For CHF 50, we already have to wait “forever”. We can speed things
up by using dynamic programming. We don’t even have to change the structure of our function, but
we provide it with an additional two dimensional array to store the values that have already been
computed. Whenever we need a value, we first check whether it has already been computed, and only
if this is not the case, we recursively call the function.

/**
* Main class of the Java program.
*
* For TESTING and SUBMITTING: Uncomment the @RunTests annotation
* (Remove the two slashes at the beginning of line ˜10)
*
*/

import java.util.Scanner;

//@RunTests
public class Main {

public static int partition(int amount, int[] billsAndCoins, int start) {
if (amount==0) {

return 1;
}
int ways = 0;
for(int i = start; i < billsAndCoins.length; i++) {

if (amount >= billsAndCoins[i]) {
ways += partition(amount - billsAndCoins[i], billsAndCoins, i);

https://codeboard.ethz.ch/inf2baugex04t02

Übungen zur Vorlesung Informatik II (D-BAUG), Blatt 4 3

}
}
return ways;

}

public static void main(String[] args) {
int[] billsAndCoins = {1000, 200, 100, 50, 20, 10, 5, 2, 1};
System.out.println("In how many ways can I own x CHF for x=?");
Scanner input = new Scanner (System.in);
int amount = input.nextInt();
int ways = partition(amount, billsAndCoins, 0);
System.out.println(ways);

}
}

Problem 4.3. Throwing Eggs.
Suppose you are in a skyscraper with 100 floors and you want to find the lowest floor f such that an
egg breaks when you throw it out the window. So you get some eggs to conduct your experiments. If
you throw an egg and it doesn’t break, you may re-use it. However, if it breaks, it can’t be thrown
again. You make the reasonable assumption that if you throw an egg from floor i and it breaks, an
egg thrown from a higher floor j > i will also break. So if an egg doesn’t break when thrown from
floor i, it also doesn’t break when thrown from a lower floor k < i. Your task is to find a strategy to
find the lowest floor from which a thrown egg breaks such that you need as few attempts as possible
(you don’t care about the number of eggs you break). However, when you run out of eggs, you should
be able to name the requested floor.

(a) What would be your strategy if you would have an arbitrary number of eggs?

(b) What would you do if you only had one egg?

(c) What would be your strategy if you only had two eggs?

Submission link: https://codeboard.ethz.ch/inf2baugex04t03

Solution of Problem 4.3.

(a) You can use binary search. Throw an egg from floor 50, if the egg breaks continue on floor 25,
and on floor 75 otherwise. In the worst case, you need log2(100) attempts.

(b) Clearly, you will have to start with the lowest floor and work your way upwards from one floor to
the next until the egg breaks.

(c) If you have two eggs, you can use the first egg to find an interval of floors in which the requested
floor lies. Within this interval, you use the same strategy as if you would have only one egg (as
you have only one egg left). Let us say you are aiming to use no more than s attempts to find
the floor f . If you throw the egg from floor s and it breaks, you need at most s − 1 additional
attempts to find the floor. If it does not break, you can continue with floor s + (s− 1). If the egg
breaks there, the floor f is between floor (s + 1) and floor s + (s − 1) − 1, so you need at most
s − 2 additional attempts to find the floor f with the second egg. So if we choose s wisely, we
need not more than s attempts in total. To get to the top of the skyscraper, we have to choose s
such that

s + (s− 1) + (s− 2) + · · ·+ 2 + 1 =
n∑

i=1
i = s(s + 1)

2 ≥ 100.

This is the case for s = 14. The first egg is thus thrown out first of floor 14, then of floor
14 + 13 = 27 and so on until it breaks. If it breaks after i attempts, we only need at most s − i

https://codeboard.ethz.ch/inf2baugex04t03

Übungen zur Vorlesung Informatik II (D-BAUG), Blatt 4 4

additional attempts with the second egg. In total, we never need more than s = 14 attempts to
find floor f with only two eggs. In general, for a building with n floors and only two eggs, you
need O(

√
n) attempts.

