ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Ubungen zur Vorlesung Informatik 1l (D-BAUG) FS 2017
D. Sidler, F. Friedrich
http://lec.inf.ethz.ch/baug/informatik2/2017

Solution to exercise sheet # 2 27.2.2017 - 7.3.2017

Please provide your solutions to the tasks using the ETH Codeboard submission system.

For the exercises please use the definitions from the lecture for O, 2 and ©. We have defined

Of)={9:N=>R|3ec>0,n€N:0<g(n) <c-f(n) Vn>ng},
Qf)={9: N>R |Je>0,n0eN:0<c- f(n) <g(n) ¥n>ne},and
o(f) = Q(f) N O(f).

Problem 2.1. Big O notation

Complete the following table. For each function f(n) determine O, the upper bound of the growth
rate.

i) feow
3n?+5

™

3n+2

loga(n) +5

nxn
(nxn—+1)*xn*n/2

Submission link: https://codeboard.ethz.ch/inf2baugex02t01

Solution of Problem 2.1.

f(n) feo®)
3nZ+5 O(n?)
™ O(n)
3n + 2 O(n)
loga(n) +5 O(logn)
n*n O(n?)
(mxn+1)xn*n/2 | O(n?)

Problem 2.2. Asymptotic Growth.
Sort the following functions from left to right such that: if function f is left to function g, then
f € O(g). Example: n3,n7,n® are in a correct order (n® € O(n"), n” € O(n?)).

n

n® 4+ n, log(nt), v/n, <§), 216 pn pl, o2 log®(n), nlogn.

Submission link: https://codeboard.ethz.ch/inf2baugex02t02

Solution of Problem 2.2. Note that (;) = £(n —2)(n — 1)n. The only correct order is

n

2
216 log(n?), log®(n), v/n, nlogn, (g), n® +n, BeE n!, n".

Problem 2.3. The set O(g).
Give a counterexample that demonstrates that the right-hand side of the following equation does not
hold.

O(f)={9:N—=R" | Jc € R, ng € N,Vn >ng:g(n)=c- f(n)}.

http://lec.inf.ethz.ch/baug/informatik2/2017
https://codeboard.ethz.ch/inf2baugex02t01
https://codeboard.ethz.ch/inf2baugex02t02

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Ubungen zur Vorlesung Informatik Il (D-BAUG), Blatt 2 2

Give a correct definition of the set O(f) as compact as possible (i.e. with the fewest possible parameters
and quantifiers) analogously to the definitions above for sets O(f) and Q(f).

Submission link: https://codeboard.ethz.ch/inf2baugex02t03

Solution of Problem 2.3. The function g(n) = n+1is clearly in O(f) and Q(f) for f(n) = n,
but doesn't satisfy the equation g(n) = c¢- f(n).
A correct compact definition is:

O(f)={9g: N>R |Ja>0,b>0,npeN:0<a-f(n) <gn) <b-f(n) ¥n > ng}.

But this can be done even more compact. If the definition holds for an a and b, we can find a ¢ such
that b < ¢ and % < a. Using this ¢ we can give a more compact definition

O(f)={9g: N>R |Je>0, nOEN:OS%-f(n)§g(n)§c~f(n)Vn2no}.

Problem 2.4. Programming Exercise — Fair Dice
Open the task description here: https://codeboard.ethz.ch/inf2baugex02t04. In this task you
are implementing a fair dice. In the main function a random generator is instantiated:

Random generator = new Random(0);

You can use this random generator to get random numbers in the interval [0, 1) by calling the function
generator.nextDouble().

After you have obtained a random number you have to map it to the numbers 1-6 of the dice. Use
the following mapping:

0,1) =1

— 2

—3

— 4

)

— 6

O T O | L DD =
O O RO | W D
N — — —

As you can see that main() function takes an integer x as input and then executes the for loop x
times. This means that it "throws” the dice x times and x numbers are printed out.

You can test and submit your program by un-commenting the annotation @RunTests.

Solution of Problem 2.4.

Main class of the Java program.

*
*
* For TESTING and SUBMITTING: Uncomment the @RunTests annotation
* (Remove the two slashes at the beginning of line ~11)

*

import java.util.Scanner;
import java.util.Random;

O@RunTests
public class Main {
public static void main(String[] args) {
Scanner input = new Scanner (System.in);
int x = input.nextInt();
//Get Random generator with seed 0

https://codeboard.ethz.ch/inf2baugex02t03
https://codeboard.ethz.ch/inf2baugex02t04

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Ubungen zur Vorlesung Informatik Il (D-BAUG), Blatt 2 3

Random generator = new Random(O);
// Get x random integers between 1-6
for (int i = 0; i < x; i++) {
// Get random number between [0,1) by calling generator.nextDouble()
double sample = generator.nextDouble();
// Map random to integers 1,2,3,4,5,6
int rand = (int) (samplex*6) + 1;
// Print out integer number
System.out.println(rand);

Problem 2.5. Programming Exercise — 1D Ranom Walk

Open the task description here: https://codeboard.ethz.ch/inf2baugex02t05. In this task you
implement a random walker. The walker walks to the left (field -1) with probability 0.4, stays on the
current field with probability 0.1 and walks to the right (field +1) with probability 0.5. The figure
below illustrates this.

~
-1 1 2
1
-— / _ =
0.4 / 0.5

As you can see in the main function in Main.java the random walker starts on field 0. Complete the
function by implementing the following steps.

1. Call generator.nextDouble() to get a random number between [0,1).

2. Use this random number to adapt the field value like this:
[0,0.4) — field = field — 1
[0.4,0.5) — field = field
[0.5,1) — field = field + 1

3. After calculating the new field value print it out. For example if the field value is “2" then the
print out should be “Feld: 2".

Now test your program by un-commenting the annotation @RunTests. Once you pass the test you can
submit your program.

Solution of Problem 2.5.

* Main class of the Java program.

*

* For TESTING and SUBMITTING: Uncomment the QRunTests annotation
* (Remove the two slashes at the beginning of line ~11)

*

import java.util.Scanner;
import java.util.Random;

https://codeboard.ethz.ch/inf2baugex02t05

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Ubungen zur Vorlesung Informatik Il (D-BAUG), Blatt 2

QRunTests
public class Main {
public static void main(Stringl[] args) {
Scanner input = new Scanner (System.in);
int x = input.nextInt();
//Get Random generator with seed 0
Random generator = new Random(0);
//Start on field 0
int field = O;
// The walker walks x times
for (int i = 0; i < x; i++) {
// Get number between [0,1) by calling generator.nextDouble()
double sample = generator.nextDouble();
// Modify field according to mapping in the exercise
if (sample < 0.4) {

field—-;

}

else if(sample >= 0.5) {
field++;

}

// print out field value
System.out.println("Feld: "+field);

