
Übungen zur Vorlesung Informatik II (D-BAUG) FS 2017
D. Sidler, F. Friedrich

http://lec.inf.ethz.ch/baug/informatik2/2017

Solution to exercise sheet # 2 27.2.2017 – 7.3.2017

Please provide your solutions to the tasks using the ETH Codeboard submission system.

For the exercises please use the definitions from the lecture for O, Ω and Θ. We have defined

O(f) = {g : N→ R | ∃c > 0, n0 ∈ N : 0 ≤ g(n) ≤ c · f(n) ∀n ≥ n0},
Ω(f) = {g : N→ R | ∃c > 0, n0 ∈ N : 0 ≤ c · f(n) ≤ g(n) ∀n ≥ n0}, and
Θ(f) = Ω(f) ∩ O(f).

Problem 2.1. Big O notation

Complete the following table. For each function f(n) determine O, the upper bound of the growth
rate.

f(n) f ∈ O(?)
3n2 + 5
7n
3n + 2
log2(n) + 5
n ∗ n
(n ∗ n + 1) ∗ n ∗ n/2

Submission link: https://codeboard.ethz.ch/inf2baugex02t01

Solution of Problem 2.1.

f(n) f ∈ O(?)
3n2 + 5 O(n2)
7n O(n)
3n + 2 O(n)
log2(n) + 5 O(log n)
n ∗ n O(n2)
(n ∗ n + 1) ∗ n ∗ n/2 O(n4)

Problem 2.2. Asymptotic Growth.
Sort the following functions from left to right such that: if function f is left to function g, then
f ∈ O(g). Example: n3, n7, n9 are in a correct order (n3 ∈ O(n7), n7 ∈ O(n9)).

n5 + n, log(n4),
√

n,

(
n

3

)
, 216, nn, n!, 2n

n2 , log8(n), n log n.

Submission link: https://codeboard.ethz.ch/inf2baugex02t02

Solution of Problem 2.2. Note that
(

n
3
)

= 1
6 (n− 2)(n− 1)n. The only correct order is

216, log(n4), log8(n),
√

n, n log n,

(
n

3

)
, n5 + n,

2n

n2 , n!, nn.

Problem 2.3. The set Θ(g).
Give a counterexample that demonstrates that the right-hand side of the following equation does not
hold.

Θ(f) = {g : N→ R+ | ∃c ∈ R+, n0 ∈ N,∀n ≥ n0 : g(n) = c · f(n)}.

http://lec.inf.ethz.ch/baug/informatik2/2017
https://codeboard.ethz.ch/inf2baugex02t01
https://codeboard.ethz.ch/inf2baugex02t02

Übungen zur Vorlesung Informatik II (D-BAUG), Blatt 2 2

Give a correct definition of the set Θ(f) as compact as possible (i.e. with the fewest possible parameters
and quantifiers) analogously to the definitions above for sets O(f) and Ω(f).
Submission link: https://codeboard.ethz.ch/inf2baugex02t03

Solution of Problem 2.3. The function g(n) = n+1 is clearly in O(f) and Ω(f) for f(n) = n,
but doesn’t satisfy the equation g(n) = c · f(n).
A correct compact definition is:

Θ(f) = {g : N→ R | ∃a > 0, b > 0, n0 ∈ N : 0 ≤ a · f(n) ≤ g(n) ≤ b · f(n) ∀n ≥ n0}.

But this can be done even more compact. If the definition holds for an a and b, we can find a c such
that b ≤ c and 1

c ≤ a. Using this c we can give a more compact definition

Θ(f) = {g : N→ R | ∃c > 0, n0 ∈ N : 0 ≤ 1
c
· f(n) ≤ g(n) ≤ c · f(n) ∀n ≥ n0}.

Problem 2.4. Programming Exercise – Fair Dice
Open the task description here: https://codeboard.ethz.ch/inf2baugex02t04. In this task you
are implementing a fair dice. In the main function a random generator is instantiated:

Random generator = new Random(0);

You can use this random generator to get random numbers in the interval [0, 1) by calling the function
generator.nextDouble().
After you have obtained a random number you have to map it to the numbers 1-6 of the dice. Use
the following mapping:
[0, 1

6)→ 1
[1

6 , 2
6)→ 2

[2
6 , 3

6)→ 3
[3

6 , 4
6)→ 4

[4
6 , 5

6)→ 5
[5

6 , 1)→ 6

As you can see that main() function takes an integer x as input and then executes the for loop x
times. This means that it ”throws” the dice x times and x numbers are printed out.
You can test and submit your program by un-commenting the annotation @RunTests.

Solution of Problem 2.4.
/**
* Main class of the Java program.
*
* For TESTING and SUBMITTING: Uncomment the @RunTests annotation
* (Remove the two slashes at the beginning of line ˜11)
*
*/

import java.util.Scanner;
import java.util.Random;

@RunTests
public class Main {

public static void main(String[] args) {
Scanner input = new Scanner (System.in);
int x = input.nextInt();
//Get Random generator with seed 0

https://codeboard.ethz.ch/inf2baugex02t03
https://codeboard.ethz.ch/inf2baugex02t04

Übungen zur Vorlesung Informatik II (D-BAUG), Blatt 2 3

Random generator = new Random(0);
// Get x random integers between 1-6
for (int i = 0; i < x; i++) {

// Get random number between [0,1) by calling generator.nextDouble()
double sample = generator.nextDouble();
// Map random to integers 1,2,3,4,5,6
int rand = (int) (sample*6) + 1;
// Print out integer number
System.out.println(rand);

}
}

}

Problem 2.5. Programming Exercise – 1D Ranom Walk
Open the task description here: https://codeboard.ethz.ch/inf2baugex02t05. In this task you
implement a random walker. The walker walks to the left (field -1) with probability 0.4, stays on the
current field with probability 0.1 and walks to the right (field +1) with probability 0.5. The figure
below illustrates this.

As you can see in the main function in Main.java the random walker starts on field 0. Complete the
function by implementing the following steps.

1. Call generator.nextDouble() to get a random number between [0, 1).

2. Use this random number to adapt the field value like this:
[0, 0.4)→ field = field− 1
[0.4, 0.5)→ field = field
[0.5, 1)→ field = field + 1

3. After calculating the new field value print it out. For example if the field value is “2” then the
print out should be “Feld: 2”.

Now test your program by un-commenting the annotation @RunTests. Once you pass the test you can
submit your program.

Solution of Problem 2.5.
/**
* Main class of the Java program.
*
* For TESTING and SUBMITTING: Uncomment the @RunTests annotation
* (Remove the two slashes at the beginning of line ˜11)
*
*/

import java.util.Scanner;
import java.util.Random;

https://codeboard.ethz.ch/inf2baugex02t05

Übungen zur Vorlesung Informatik II (D-BAUG), Blatt 2 4

@RunTests
public class Main {

public static void main(String[] args) {
Scanner input = new Scanner (System.in);
int x = input.nextInt();
//Get Random generator with seed 0
Random generator = new Random(0);
//Start on field 0
int field = 0;
// The walker walks x times
for (int i = 0; i < x; i++) {

// Get number between [0,1) by calling generator.nextDouble()
double sample = generator.nextDouble();
// Modify field according to mapping in the exercise
if (sample < 0.4) {

field--;
}
else if(sample >= 0.5) {

field++;
}
// print out field value
System.out.println("Feld: "+field);

}
}

}

