ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Ubungen zur Vorlesung Informatik 1l (D-BAUG) FS 2017
D. Sidler, F. Friedrich
http://lec.inf.ethz.ch/baug/informatik2/2017

Problem set # 9 8.5.2017 - 16.5.2017

Problem 9.1. Recursive Search Tree
For this task open the project on codeboard: https://codeboard.ethz.ch/inf2baugex09t01

There are three files: SearchNode.java, SearchTree.java, and Main.java. You will work on the class
SearchTree, but have a look at the class SearchNode which specifies a node in the tree and the Main
class which tests your implementation.

In the lecture you have seen the data structure binary tree and the method Search was presented.
Search iterates through the tree to find a node. As you can see in the SearchTree class, the iterative
version is already implemented:

public SearchNode Search (int k){
SearchNode n = root;
while (n != null && k != n.key) {
if (k < n.key) n=n.left;
else n = n.right;

}

return n;

}

In this exercise you will implement an alternative version of the above iterative SearchNode method.
More specifically we ask you to implement the same functionality, but in a recursive fashion.

Please complete the following two functions:

private SearchNode SearchRecursion(SearchNode current_root, int k) {
//TODO implement this
}

public SearchNode SearchRecursive(int k) {
SearchNode result;

//TODO implement this
return result ;

}

SearchRecursive is the function being called instead of the original Search function. The function
SearchRecursive must use the private method SearchRecursion to do the actual recursion. So
SearchRecursive calls the function SearchRecursion once and then SearchRecursion recursively
calls itself until it reached the specific node or a leaf node. In case the node is found it returns the
node otherwise it returns null.

The Main class is testing your implementation by comparing the output of provided Search function
with the output of your implementation of SearchRecursive.

Once the two functions are functionally equal, submit your code.

Problem 9.2. T9 directory

Maybe some of you still experienced the so called T9 keyboards which used to be very popular before
the raise of smart phones. Before smartphones, most phones only featured a key layout as seen in
Figure 1: When typing messages a user would have to repeat a number to get to second or third latter
mapped on a number. So e.g to type a 'f’ one would have to type '3’ three times. This makes entering
text a slow and cumbersome process. The problem becomes even more apparent if we consider the
word 'hallo’. With this method, the user must press 4, 4, 3, 3, 5, 5, 5, then pause, then 5, 5, 5, 6, 6
and finally another 6. To speed up this process T'9 was invented.

Predictive Text (also known as T9) is a system that aims to reduce the number of key presses necessary
to enter text. Instead of pressing a number multiple times to reach some letters the user has to only
press the number once. For instance, in order to obtain 'h' he would press 4 only once — instead of

http://lec.inf.ethz.ch/baug/informatik2/2017
https://codeboard.ethz.ch/inf2baugex09t01

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Ubungen zur Vorlesung Informatik Il (D-BAUG), Blatt 9 2

1 2 (abc) || 3 (def)

4 (ghi) 3 (gk1) 6 (mno)

T(pars) || 8 (tuv) || 9 (wxyz)

space 2

Figure 1: Common key layouts on older generations of phones

twice. This reduces the number of key presses in the case of 'hallo’ from 12 to 5. hallo will be
mapped to the combination 4,2,5,5,6.

The main drawback of this approach is that these mappings are not unique. Fore example 'gcjkm’
would be mapped to the same number combination 4,2,5,5,6. Usually this was resolved by ordering
words that map to the same combination by their likelihood of appearance and then the user could
cycle through them using the * button.

For this exercise open the template project at https://codeboard.ethz.ch/inf2baugex09t02. The
project contains 3 files: T9Node.java, T9Tree.java and Main.java. You will work on the T9Tree.java
file. Also have a look at the code in T9Node.java which specifies a node in the tree. The code in
Main.java is used to test your implementation and is explained further down.

Your task in this exercise is to complete a very simple T9 implementation by completing the following
tasks:

e Study the code and understand the existing implementation. Understand that we are dealing
with a tree here, where each Node has eight children (numbers 2-9 on the phone keyboard).
Each node contains a Vector (growing array) of Strings representing words which match the T9
sequence to this Node.

e Complete the methods reverseNumber, addWord and findWords in T9Tree.java which we
describe in more detail below.

reverseNumber

Method reverseNumber is used as a tool function in findWords and should be pretty straightforward.

//pre: a number
//post: the reversed of that number — eg. 12345 becomes 54321
private long reverseNumber(long number)

Hint: To get the last digit of a number you can use:

int last_digit = (number % 10);

addWord

public void addWord(String newword)

Within this function your task is to take a word - lets take e.g. our running example 'hello’” and add it
to the tree. To do so you would start at the tree root and look at the first letter of your word - in this
case a 'h’. You map the 'h’ to a number - you can use the char2number method for this purpose. This
returns the number encoding for the string. Watch out that the indexing in the array will be off by two
(so e.g. number encoding "2’ should map to the zeroth child Node. So in our example 'h’" would map
to 4 - we subtract 2 to get the 2nd child Node. Watch out that this could be empty (null). If that

https://codeboard.ethz.ch/inf2baugex09t02

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Ubungen zur Vorlesung Informatik Il (D-BAUG), Blatt 9 3

is the case we create a new node - otherwise we follow the existing one. We now repeat this process
for each letter of the word, and traveling down the tree in the process (and / or creating nodes in the
process). Once we ran out of letters in our word, we reached the final node and we call the addString
method of this node.

findWords

//pre: a word encoded as a number

//post: returns all the strings contained in the tree that are encoded
// by this number(can be more then one!)

public Vector<String> findWords(long number)

Finally we turn the problem around. The method findWords takes a number and returns all the words
that would map to it. So for 42556 it could e.g. return hallo. To implement the function remember
that the leading number always determines the direction of traversal in the tree. For instance, in the
running example you would first look at the 4, then at the 2, 5 and so on. Therefore it might be
beneficial to use the reverseNumber method you already implemented to make access to those digits
easier. Pass through the tree guided by the digits of the number - should you encounter an empty child
(null) - simply return null. Otherwise return all the strings stored in the final node.

You can test your program by un-commenting the annotation @RunTests at the beginning of the class
Main. Once you pass the test you can submit your program.

To test your implementation, you can use the following commands which are implement in the Main
class:

enter Adam
number 2326
samet9 Adam

The enter command takes a word (Adam) and adds it to the T9 dictionary (T9Tree). The number
command takes a number (2326) and returns all words which map to this T9 number, e.g. Adam.
The samet9 command returns all words which have the same t9 mapping as the given word (Adam).

Problem 9.3. Binary Trees
Consider the sequence 9,5,14,7,3,16,1,4. Insert these elements in this order into an empty
1. binary search tree (without any balancing).

2. binary Max-Heap.

Draw and give the pre-, post- and in-order traversal of the resulting trees.
Now insert the element 2 and draw the trees after the insertion.
Then remove the element 14 and draw the trees after the deletion.

Hint: To remove an element in a heap, swap it with the last element. Then, depending on the parent
element, sink or bubble up the element.

Submission link: https://codeboard.ethz.ch/inf2baugex09t03

https://codeboard.ethz.ch/inf2baugex09t03

