ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Ubungen zur Vorlesung Informatik 1l (D-BAUG) FS 2017
D. Sidler, F. Friedrich
http://lec.inf.ethz.ch/baug/informatik2/2017

Problem set # 3 6.3.2017 — 14.3.2017

Problem 3.1. Reverse Words

Open the task description here: https://codeboard.ethz.ch/inf2baugex03t01. In this task you
write a program that takes strings as an input and reverses the order of the character in the strings.
For instance for the input string Hello the program returns the string olleH.

Looking at the main function in Main.java, you can see that it reads a string from the input and then it
checks if this string is equal to "exit"”. If this is the case the program prints out "exit." and terminates.
Otherwise the program is going to reverse the characters in the string and output it. After reversing a
string the program goes back to the beginning of the while loop and reads in the next string. This
means the program will read in new string until you enter "exit".

Scanner input = new Scanner (System.in);
while (true) {
String str = input.next();
if (str.equals("exit")) {
System.out.println("exit.");
break;

}
//TOD0 reverse the input string str and print it out

}

Implement the functionality to reverse the string, you can make use of the java function charAt (int pos)
to get the character at position pos in a string.

You can test your program by un-commenting the annotation @RunTests. Once you pass the test you
can submit your program.

Problem 3.2. Matrix Multiplication

Open the task description here: https://codeboard.ethz.ch/inf2baugex03t02. In this task you
are implementing two functions, the first one readMatrix reads a matrix from the input, the second
one multiplyMatrix multiplies two matrices and returns the resulting matrix.

First have a look at the function readMatrix in the file Main.java. In order to read a matrix from the
input use the Scanner. The format of a 7 X ¢ matrix is explained with the following 2 x 3 example
matrix:

23
0.10000 0.20000 0.30000
1.10000 1.20000 1.30000

The first line contains the number 7 of rows followed by the number ¢ of columns, both integers. The
following r lines contain ¢ doubles each, representing a 7 X ¢ matrix. The numbers are separated by
whitespaces.

After implementing this function you can complete the implementation of the multiplyMatrix func-
tion. The goal is to do a matrix multiplication (m1 x m2), where m1 has size (N1 x M1) and m?2
has size (N2 x M2) and N1, M1, N2, M2 > 0. The resulting matrix should be of size (N1 x M?2).
Do not modify the input data.

After implementing the function you can test your program by un-commenting the annotation @RunTests.
Once you pass the test you can submit your program.


http://lec.inf.ethz.ch/baug/informatik2/2017
https://codeboard.ethz.ch/inf2baugex03t01
https://codeboard.ethz.ch/inf2baugex03t02

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Ubungen zur Vorlesung Informatik Il (D-BAUG), Blatt 3 2

Problem 3.3. Artificial Words
Open the task description here: https://codeboard.ethz.ch/inf2baugex03t03.

Goal of this task is to generate artificial words from an alphabet. We consider the alphabet Q) =
{"_')’A’,...,"Z'}. ' stands for the empty letter.

From a very long text, for each letter z € Q) the relative frequency of all potentially following letters
y € Q is determined as P,,,. This yields a probability matrix (P, )z yeq. Thus, P contains the relative
frequencies for character combinations of the form "AA”, "ST", or "_A"” (empty letter before: word
starts) or "Z_" (empty letter after: word ends).

Now, from the probability matrix P a word can be generated by starting with the empty letter, x =",
and subsequently drawing new characters from P,. until the empty letter appears again.

In the following you see an excerpt of a probability matrix P, generated from a tale from Johann
Wolfgang von Goethe and some generated words.

" A ‘B’ 'C 'D’ 'E’ 'F’ G’ 'H'
' 1 0.000 0.073 0.040 0.000 0.154 0.063 0.028 0.047 0.045
‘A" | 0.008 0.002 0.049 0.048 0.006 0.000 0.011 0.047 0.031
‘B’ | 0.061 0.061 0.000 0.001 0.000 0.536 0.001 0.015 0.004
'C' | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0902
‘D' | 0.208 0.088 0.000 0.004 0.000 0.431 0.000 0.000 0.000
'E' | 0.240 0.000 0.014 0.005 0.012 0.001 0.009 0.015 0.022
'F" | 0.204 0.052 0.000 0.000 0.000 0.167 0.045 0.014 0.039
'G" | 0.174 0.027 0.000 0.000 0.002 0.514 0.003 0.001 0.000
'H | 0.222 0.078 0.001 0.001 0.002 0.165 0.002 0.001 0.003

WOPT DEDERUTERM SCHRCHLAGEGOR DIN ASTE FOSITEMER IGTES AUF SENNER DEIMER EMAR ZTENNALENDIN
WAHWAUR VOCHENS WRINGENE DESTRN ZERERTER ALISCHRDERCH IGSSONSCH VOLIGET ALZUNSCHR
LDULE AUNN UN WABGEIE D BR KENUNEIGT SPTCHIHMERR OLICHN DE SORBEN UESERER

In the file Main.java you see three functions: Sample, GenerateWord, and GetMatrix. You have to
complete the first two functions. The Sample function returns the index of the next letter where the
index is in the range 0-26. In the function GenerateWord you only need to complete one line. The func-
tion GetMatrix is already implemented. It reads the probability matrix from the file "probabilities.txt".
Do not change this function nor the probabilities in the file.

Once you have implemented the two functions, you can test your program by un-commenting the
annotation @RunTests. Once you pass the test you can submit your program.


https://codeboard.ethz.ch/inf2baugex03t03

