
Computer Science II, D-BAUG FS 2015 Assignment 10, "Bonus-Exercise"
Departement of Computer Science Out: 9th of Mai 2016
ETH Zurich Due: 24th of Mai 2016, 23:59:59h

Bonus-Exercise

This is a bonus-exercise. Points earned in this exercise will benefit you for your final grade
of the "Basispruefung". Maximal achievable bonus is 0.25 on top of your grade and it will be
added after the correction of the exam, but before averaging with the "Informatik I" grade.
(Meaning it is a real bonus).

Academic integrity

Only submit a solution you did yourself and you understand. To ensure this we reserve the
right to invite people for an oral debriefing of the exercise. We select people both randomly and
those that got suspiciously similar code to other people. (This will be checked by automated
tools).

Asking questions

Before sending a mail with a question to this exercise check out the homepage Inf II Homepage.
We might update the exercise in case it contains bugs and collect all frequently asked questions
with their answers on the website. In case your question was not answered by the information
given on the homepage please send your question to the email

Informatik2_baug@lists.inf.ethz.ch

Using the judge

We will use the same system, as we already used for the first five exercises. Those that success-
fully submitted a homework so far can ignore this section. If you are one of the few people that
did not use the judge system so far follow the instructions below to create an account within
the system:

• Open https://challenge.inf.ethz.ch/team/?cid=9 in a Web Browser and login with your
student account.

• On the next site you will be asked for an “Enrollment Key“ - enter “bonus“ as the key.

• A detailed instruction on how to use the judge can be found here: Assignment 1

Please note that you can, as it was the case before, resubmit as often as you want. The judge
will refuse submissions only after the due date 24th of May, 23:59:59.

http://lec.inf.ethz.ch/baug/informatik2/2015
http://lec.inf.ethz.ch/baug/informatik2/2016/
https://challenge.inf.ethz.ch/team/?cid=9
http://lec.inf.ethz.ch/baug/informatik2/2016/ex/Exercise01.pdf

1 Write a function that ... (12 pts)

In the first and hopefully easiest part of the bonus exercise you are asked to complete functions
according to a specification.

1.1 ... computes the greatest common divisor of two integers

// pre : two po s i t i v e non�zero i n t e g e r s n and m
// post : r e turn the g r e a t e s t common d i v i s o r o f n and m
// i . e . the l a r g e s t p o s i t i v e i n t e g e r that d i v i d e s n and m without a remainder
pub l i c s t a t i c i n t gcd (i n t n , i n t m)

1.2 ... computes the median of three doubles

// pre : non�nu l l array a o f l ength 3
// post : r e turn the median o f {a [i] : 0 <= i < 3}
pub l i c s t a t i c double median3 (double a [])

1.3 ... returns the product of all integers between two integers

// pre : two i n t e g e r s a and b
// post : r e turn the product o f a l l i n t e g e r s in the g en e r a l i z ed i n t e r v a l
// [a , b] = { i n t e g e r x : a <= x <= b or b <= x <= a}
pub l i c s t a t i c i n t prod (i n t a , i n t b)

1.4 ... computes the maximal length of all subsequences of ones

// pre : a sequence o f numbers s to r ed in an i n t e g e r array a
// post : r e turn length L o f l onge s t cont iguous subsequence o f ones
// L = max {(b�a+1): 0 <= a <= b < len (a) , a [i] = 1 f o r a l l a <= i <= b}
// 0 i f the passed r e f e r e n c e i s nu l l
// 0 i f i t s empty
//example : the sequence 1 1 1 2 3 5 6 1 1 1 1 1 2 2 should eva luate to 5
pub l i c s t a t i c i n t lensOfOnes (i n t [] a)

Files and Submission

Skeleton link for 1.1: http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/function/gcd/Main.java

Submission link for 1.1: https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BFGc

Skeleton link for 1.2: http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/function/median3/Main.

java

Submission link for 1.2: https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16FMed

Skeleton link for 1.3: http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/function/prod/Main.

java

Submission link for 1.3: https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16FPro

Skeleton link for 1.4: http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/function/ones/Main.

java

Submission link for 1.4: https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16FOne

http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/function/gcd/Main.java
https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BFGc
http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/function/median3/Main.java
http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/function/median3/Main.java
https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16FMed
http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/function/prod/Main.java
http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/function/prod/Main.java
https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16FPro
http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/function/ones/Main.java
http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/function/ones/Main.java
https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16FOne

2 Weighted Mean (11 pts)

Goal of this part of the exercise is to write an object that can be used in order to compute
a weighted mean on a stream of numbers.1 Before we formally describe the exercise, consider
the following scenario in order to understand the task. Assume you get a sequence of numbers,
say 1 3 2 4 5 6 .. . Now, already while the numbers are provided you want to compute a
weighted sum by multiplying the most recent available numbers with the values of a so called
kernel providing the weights for the sum, here: 1,2,4,2,1

In order to normalize the weighted sum, you have to divide by the sum of all values of the
kernel. In the example above, the kernel values add up to 1 + 2+ 4+ 2+ 1 = 10, so the results
from the object are computed as follows
1 � 1

10
= 0:1

2 � 1 + 1 � 3

10
= 0:5

4 � 1 + 2 � 3 + 1 � 2

10
= 1:2 :::

1 � 3 + 2 � 2 + 4 � 4 + 2 � 5 + 1 � 6

10
= 3:9

Note that in the beginning we do not have enough data for the whole width of the kernel,
which is why we only use a part of the kernel or – here equivalently – fill up the unavailable
positions with zeroes. Later, we have more data than the kernel width and therefore forget
about old data: having received 6 values, only 5 values are taken into account in the example
above (right most figure).

It might help to have a concrete example in mind in order to understand this: Assume you
measure the rainfall in the mountains. Now you want to model the amount of water that flows
down the river at the bottom of the mountains: first you get the water from the small hills
close by (little), then you get the water from the main part (a lot) and eventually the rest for
the parts far away. Feeding the rainfall measures int our weighted sum object might result into
a reasonable model for river flow.

In the following, we describe phenomenologically and with example code what the object is
supposed to do. Your task is to implement the corresponding class such that the object’s
behavior is as expected.

Task Description

Provide a class WeightedMean with the following properties:

• A WeightedMean f can be instantiated with an array of doubles (a “kernel”) in the following
way:

double [] a = {1,2,4,2,1};
// a: non -empty array of positive non -zero values
WeightedMean w = new WeightedMean(a);

• WeightedMean provides an input method Put that accepts integer numbers and has no
return value

int value;
w.Put(value);

1Such objects are used a lot in digital signal or image processing for filtering streams of data. The mathematical
term for this is a convolution.

• WeightedMean provides an output method Get that returns the current weighted sum as a
double. Assuming that the weighted mean w was initialized with kernel a of length k, and
assuming we have provided (“Put”) data d0; : : : ; dn�1, the object will return the following
value Pm�1

i=0 dn�1�i � ai
Pn�1

i=0 ai

where m := min(k; n).

• Example:

double [] kernel = [1,4,1]; // kernel of width 3
WeightedMean w = new WeightedMean(kernel);
w.Put (1); // now w.Get() would return 1*1/6=0.167
w.Put (2); // now w.Get() would return (1*2+4*1)/6 = 1
w.Put (3); // now w.Get() would return (1*3+4*2+1*1)/6 = 2.0
w.Put (4); // now w.Get() would return (1*4+4*3+1*2)/6 = 3.0
w.Put (8); // now w.Get() would return (1*8+4*4+1*3)/6 = 4.5
...

To test your implementation, enter the kernel size followed by the kernel weights followed
by list of numbers followed by end. For example, input (kernel size, kernel data, data)
3 1.0 4.0 1.0 1 2 3 4 1 end should lead to this output

0.16666666666666666
1.0
2.0
3.0
3.3333333333333335

Files and Submission

Skeleton link for 2: http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/objects/Main.java

Submission link for 2: https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BObj

http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/objects/Main.java
https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BObj

3 Remove an Element from a Double Linked List. (11 pts)

In this exercise your task is to remove an element from a double linked list. A double linked
list is a list where each element has a reference to the next element and the previous element
of the list.

class Node{
private int data; // holds the value of the node
private Node next; // references to next
private Node previous; // and previous node
...

}

Double linked lists are known for particular efficient removal and insertion of elements. In
the figure below, the marked element is removed by resetting the next pointer of its previous
element and the previous pointer of its next element accordingly.

first last

a b c d e

next

previous

next

previous

next

previous

Task

Implement the method remove(Node n) of the class List.

Hint: Before implementing think of invariants and special cases.

To test your implementation use add to build up a list, out for output and remove to remove a
list element. For example, input

add 1 2 3 4 5
out
remove 3
out

should lead to this output:

F-> 1 <-> 2 <-> 3 <-> 4 <-> 5 <-L
F-> 1 <-> 2 <-> 4 <-> 5 <-L

Files and Submission

Skeleton link for 3: http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/doubly/Main.java

Submission link for 3: https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BDLL

http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/doubly/Main.java
https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BDLL

4 Remove Duplicates (11 pts)

Your task in this exercise is to remove duplicates from a sorted list. An intial list might look
like this:

first

1 2 2 2 3 3 7

next next next next next next

After removal of the duplicates, the list look should look like this:

first

1 2 3 7

next next next

and the removal operation itself should return a list that contains the duplicates, keeping further
duplication, if any.

first

2 2 3

next next

Task

Implement the method removeDuplicates of the class List.

The following test input

add 1 2 8 3 2 3 2 4 4 2 2 2 2 3
out
duplicates
out

should lead to this output:

1 -> 2 -> 2 -> 2 -> 2 -> 2 -> 2 -> 2 -> 3 -> 3 -> 3 -> 4 -> 4 -> 8 ->
2 -> 2 -> 2 -> 2 -> 2 -> 2 -> 3 -> 3 -> 4 ->
1 -> 2 -> 3 -> 4 -> 8 ->

Files and Submission

Skeleton link for 4: http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/sorted/Main.java

Submission link for 4: https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BLis

http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/sorted/Main.java
https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BLis

5 Words (11 pts)

This exercise is about a hypothetical game where the players are asked to take words out of a
sentence. The following rule makes the game interesting: the characters of a word have to be
available in the sentence in the correct order but not necessarily in a contiguous way. If a
word is contained in the sentence, its characters are removed one by one from the sentence in
the order they appear in the text. Each character of a word is removed once. The objective
of the game is simple: the first player who cannot build a word from the remaining characters
any more, looses the game. Note that the human players are not allowed to check for remaining
characters. They have to memorize this.

Consider the following example:
Start sentence: “viel erfolg bei dieser uebung.”
Example word: “vers”
Remaining characters: “il efolg bei dieer uebung.” (A player does not see this)
Example word: “leber”
Remaining characters: “i folg i diee uebung.”
...

Implement in this exercise a class Text with the following interface:

class Text {
// Initial text to start with
Text(String t);

// pre: non -null string s
// post: return if text contains the characters of the string
// characters have to be found in the right order but not
// necessarily contiguously
// in case the string is found , the corresponding characters
// have been removed one by one from the text.
boolean HasString(String s);

}

In order to keep it simple, we only feed lowercase characters, whitespaces and punctuation
marks.

To test your implementation, enter a sentence followed by <enter> and a sequence of words
with command word. For example, input

maus und elefant.
word mund
word aus
word elf

should lead to this output:

contained
not contained
contained

Files and Submission

Skeleton link for 5: http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/words/Main.java

Submission link for 5: https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BWor

http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/words/Main.java
https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BWor

6 Stack-based Calculator (11 pts)

This task is about implementation of a calculator on a stack. Basically the idea is that values
and operations can be deposited on a stack for evaluation. However, focus of this exercise is not
on the stack itself. It only serves as the storage container to keep intermediate results. Focus
of this exercise is on the implementation of the operations (add, multiply, minus) on the stack,
for which OOP techniques will be used.

The idea is to complement the already existing implementation such that the following opera-
tions would be, for example, working:

Op left = new Number (10);
Op right = new Number (20);
Op op = new Adder(left , right);
Op op = new Minus(op);
System.out.println(op.ToString ()); // output is -(10+20)
System.out.println(op.Evaluate ()); // output is -30

The provided source code file contains classes Number, Adder, Multiplier, Minus, Stack and
Main. The content of all classes except the Minus class is already finished.

Your tasks:

1. Complement the code such that it compiles by only using the mechanism of inheritance.
The main function should now behave as expected when you use commands value, add,
mult and out.

2. Complement the code such that the functionality of minus also works: provided that o is
an Op item, a Minus item created as

Op m = Minus(o);

should evaluate to the negative of o, i.e. it should hold that m.evaluate()==-o.evaluate().
Moreover, the string created by m.ToString() should prefix the string of o.ToString()
with a single Minus-sign (and no further whitespaces).

To test your implementation, use commands like value (followed by an arbitrary number of
integers), add, mult, out or minus. For example:

value 20 30 add value 30 40 add
mult
out

should lead to this output:

((20 + 30) * (30 + 40)) = 3500

Hint: In order to accomplish this task and understand the mechanism, first follow task (1) and
make sure the code simply compiles. Then play with the calculator starting from some provided
examples (in the code) to learn how it works and what it does. Only then implement the Minus
object accordingly.

Files and Submission

Skeleton link for 6: http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/oop/Main.java

Submission link for 6: https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BOop

http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/oop/Main.java
https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BOop

7 Longest Path (Recursion) (11 pts)

This exercise is about (recursively) computing
the length of the longest path reachable from
the root of a tree. We consider the following
setup: We start at some fork. A fork can be
either the end of a path (i.e. a bifurcation with-
out outgoing paths) or the beginning of one
ore more paths that each lead to the next fork.
We assume that each path ends somewhere and
paths do not join, i.e. that the underlying struc-
ture is in fact a tree.

We describe a set of paths by a sequence of integers, starting with a fork. A fork (and, recur-
sively, the set of forks reachable from it) is specified as follows:

1. An integer n that provides the number of outgoing paths. n = 0 means, there is no
outgoing path, i.e. the fork provides the end of a path.

2. If n > 0 then the sequence provides n times the following:

(a) A number describing the length of the outgoing path.
(b) Followed by the specifcation of the next fork on that path

Example: The paths in the figure to
the right are described with input se-
quence 3 3 2 2 0 1 2 4 0 3 0 4 0 4 0, or
layouted more intuitively:
3
3 2

2 0
1 2

4 0
3 0

4 0
4 0

The longest path in this example has length 8. The corresponding path lenghts are marked
boldface red. The blue italics numbers correspond to the number of outgoing paths for each
fork.

Implement the following function that reads the decription of the paths starting at a fork and
returns the length of the longest path.

// pre: integers at scanner describing a fork
// post: return longest path described by input
public static int longestPath(java.util.Scanner scanner){

Use scanner.nextInt() in order to retreive the next integer. You can assume that inputs are
well-formed and thus a correct program would terminate correctly with our inputs.

Hint: This exercise is not about trees: you do not have to build up a tree in memory. Use
recursion instead. Without recursion, this task is much more difficult to solve.

Files and Submission

Skeleton link for 7: http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/paths/Main.java

Submission link for 7: https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BRec

http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/paths/Main.java
https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BRec

8 Trees (11 pts)

In a tree nodes have more than one successor. Recall that a binary search tree is a tree of
order two with keyx:left < keyx < keyx:right for each node x

public class Node {
int key;
SearchNode left;
SearchNode right;
...

}

key left right

key left right key left right

Your task in this exercise is to count occurences of nodes that provide a key in a given interval:

// non -balancing binary search tree
class Tree{

// insert k sorted into the tree
public Node Insert (int k){...}

// pre: binary search tree
// post: return number of elements n in the tree
// with from <= n.key <= to
public int Elements(int from , int to){

IMPLEMENT THIS

}

// print the tree
public void print (){...}

}

Files and Submission

Skeleton link for 8: http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/trees/Main.java

Submission link for 8: https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BTre

http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/trees/Main.java
https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BTre

9 Online Median with Heaps (11 pts)

Your task in this exercise is to implement the online median as discussed in the lectures.

In the template we provide a fully working implementation of a Min-/Max-Heap. Moreover, we
provide a template for the online median class that has the following interface:

class OnlineMedian {

// constructor
OnlineMedian () {...}

// post: insert a new value to this online median
// such that the computation of the median
// can be performed in O(1);
public void Insert(double value){

// implement this
}

// pre: at least one value has been entered into this
// data structure via method Insert
// post: Return the median of all values that have been
// entered in this data structure via method Insert.
public double Get()
{

// implement this
}

}

Implement functions Insert and Get. Everything else is already implemented. Do not be
surprised if your solution for this method is pretty short.

To test your implementation, you can add numbers to your online median using add, the median
is output via out:

add 1 8 2 4 7 6 6 3 2 9 10
out
add 10 10 10
out
add 10
out

should lead to this output:

6.0
6.5
7.0

Files and Submission

Skeleton link for 9: http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/median/Main.java

Submission link for 9: https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BMed

http://lec.inf.ethz.ch/baug/informatik2/2016/ex/ex10/median/Main.java
https://challenge.inf.ethz.ch/team/websubmit.php?cid=9&problem=IB16BMed

	Write a function that ... (12 pts)
	... computes the greatest common divisor of two integers
	... computes the median of three doubles
	... returns the product of all integers between two integers
	... computes the maximal length of all subsequences of ones

	Weighted Mean (11 pts)
	Remove an Element from a Double Linked List. (11 pts)
	Remove Duplicates (11 pts)
	Words (11 pts)
	Stack-based Calculator (11 pts)
	Longest Path (Recursion) (11 pts)
	Trees (11 pts)
	Online Median with Heaps (11 pts)

